Experimental study on dry sliding wear properties of aluminum alloy 6026 were performed utilizing pin-on-disk wear testing machine, considering the wear parameters like the applied load on the pin and the rotational and track diameter of disk. Wear of the pin, coefficient of friction and frictional force were observed during the test procedure for analysis. The experimental trials were designed by L16 Orthogonal Array based on Taguchi’s design of experiments and a hybrid approach of gray relational analysis combined with response surface methodology was applied for optimizing the output responses. The optimum conditions obtained for lower wear, coefficient of friction and frictional force were 35.21 N load, 376 r/min speed of disk and 111.53 mm disk track diameter, respectively. Scanning electron microscopy image of specimens taken after testing shows that abrasive wear mechanism is the predominant mechanism of wear. Experiment of confirmation with optimum conditions shows that the result was nearer to the predicted results.
In the present investigation, mechanical, corrosion and fatigue characterization is performed on the fabricated aluminium metal matrix composite (AMMC), by reinforcing nickel (Ni) and copper (Cu) coated 4% carbon fibre (CF) in aluminium alloy (AA6026) matrix. With a view of enhancing the strength of the aluminium alloy, an optimal percentage (4 wt%) of CFs is reinforced; as CFs cannot be directly reinforced in the aluminium matrix due to poor wettability, CFs are coated with Ni and Cu using electroless plating technique for better wettability and bonding between reinforcement and matrix. Properties of the cast alloy and coated CF reinforced composite are compared and the composite with better properties is identified as 4% Cu coated CFs reinforced AMMC. When compared with as-cast alloy and Ni coated CF reinforced composite, the tensile strength of Cu coated CFs composite was higher by 15.36% and 2.55%. Similarly, micro-Vickers hardness was improved by 7.61% and 3.09%, impact strength by 19.61% and 3.39%, flexural strength by 87.50% and 15.38%. The corrosion rate (mils/year) was reduced with incorporation of 4% Cu coated CFs in AA6026 by 59.72% and 23.23% as compared with as-cast and Ni coated CF reinforced composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.