Summary
A Bayes linear space is a linear space of equivalence classes of proportional σ‐finite measures, including probability measures. Measures are identified with their density functions. Addition is given by Bayes' rule and substraction by Radon–Nikodym derivatives. The present contribution shows the subspace of square‐log‐integrable densities to be a Hilbert space, which can include probability and infinite measures, measures on the whole real line or discrete measures. It extends the ideas from the Hilbert space of densities on a finite support towards Hilbert spaces on general measure spaces. It is also a generalisation of the Euclidean structure of the simplex, the sample space of random compositions. In this framework, basic notions of mathematical statistics get a simple algebraic interpretation. A key tool is the centred‐log‐ratio transformation, a generalization of that used in compositional data analysis, which maps the Hilbert space of measures into a subspace of square‐integrable functions. As a consequence of this structure, distances between densities, orthonormal bases, and Fourier series representing measures become available. As an application, Fourier series of normal distributions and distances between them are derived, and an example related to grain size distributions is presented. The geometry of the sample space of random compositions, known as Aitchison geometry of the simplex, is obtained as a particular case of the Hilbert space when the measures have discrete and finite support.
Results of ecological models differ, to some extent, more from measured data than from empirical knowledge. Existing techniques for validation based on quantitative assessments sometimes cause an underestimation of the performance of models due to time shifts, accelerations and delays or systematic differences between measurement and simulation. However, for the application of such models it is often more important to reproduce essential patterns instead of seemingly exact numerical values. This paper presents techniques to identify patterns and numerical methods to measure the consistency of patterns between observations and model results. An orthogonal set of deviance measures for absolute, relative and ordinal scale was compiled to provide informations about the type of difference. Furthermore, two different approaches accounting for time shifts were presented. The first one transforms the time to take time delays and speed differences into account. The second one describes known qualitative criteria dividing time series into interval units in accordance to their main features. The methods differ in their basic concepts and in the form of the resulting criteria. Both approaches and the deviance measures discussed are implemented in an R package. All methods are demonstrated by means of water quality measurements and simulation data. The proposed quality criteria allow to recognize systematic differences and time shifts between time series and to conclude about the quantitative and qualitative similarity of patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.