The control of tip leakage flow through the clearance gap between the moving and stationary components of rotating machines is still a high-leverage area for improvement of stability and performance of aircraft engines. Losses in the form of flow separation, stall, and reduced rotor work efficiency are results of the tip leakage vortex (TLV) generated by interaction of the main flow and the tip leakage jet induced by the blade pressure difference. The effects are more detrimental in transonic compressors due to the interaction of shock TLV. It has been previously shown that the use of slots and grooves in the casing over tip of the compressor blades, known as casing treatment, can substantially increase the stable flow range and therefore the safety of the system but generally with some efficiency penalties. This paper presents a numerical parametric study of tip clearance coupled with casing treatment for a transonic axial-flow compressor NASA Rotor 37. Compressor characteristics have been compared to the experimental results for smooth casing with a 0.356 mm tip clearance and show fairly good agreement. Casing treatments were found to be an effective means of reducing the negative effects of tip gap flow and vortex, resulting in improved performance and stability. The present work provides guidelines for improvement of steady-state performance of the transonic axial-flow compressors and improvement of the stable operating range of the system.
The casing treatment and flow injection upstream of the rotor tip are two effective approaches in suppressing instabilities or recovering from a fully developed stall. This paper presents numerical simulations for a high-speed transonic compressor rotor, NASA Rotor 37, applying a state-of-the-art design for the blade tip injection. This is characterized by introducing a jet flow directly into the casing treatment machined into the shroud. The casing treatment is positioned over the blade tip region and exceeds the impeller axially by ∼30 per cent of the tip chord both in the upstream and in the downstream directions. To numerically solve the governing equations, the three-dimensional finite element based finite volume method CFD solver CFX-TASCflow (version 2.12.1) is employed. For a compressible flow with varying density, Reynolds-averaging leads to appearance of complicated correlations. To avoid this, the mass-weighted or Favre-averaging is applied. Using an injected mass flow of 2.4 per cent of the annulus flow, the present design can improve stall margin by up to 7 per cent when compared with a smooth casing compressor without tip injection. This research can lead to an optimum design of recirculating casing treatments or other mechanisms for performance enhancement applying tip flow injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.