On the basis of the results of a variety of teratogenicity studies in Sprague-Dawley-derived albino rats, carried out over several years in our laboratory, an appraisal of the principal experimental procedures is set forth. Various categories of chemicals were used for the evaluation of dosage-related teratogenic potency. Salicylate, prednisolone, cyclophosphamide, 5-hydroxytryptamine (serotonin), glycinonitrile, and dimethylformamide have proven to be teratogenic under certain of the experimental conditions used. Particular differences in the embryotropic effects of acetylsalicylic acid were caused by qualitative and quantitative changes of the vehicle. Fetal morphological abnormalities, classified either as ‘malformations’ or as ‘anomalies’, may occur independently of overt maternal toxicity and/or embryotoxicity. Further, they may be closely correlated with general inhibitory effects on growth. Drugs may affect developing tissues and organs selectively due to their pharmacological activity and/or specific organ toxicity. The limitation of maternal treatment to a very short period of gestation may disclose a specific susceptibility of developmental stages of the embryo or fetus. Finally, the importance of data collected from a historical control population to the interpretation of teratogenicity data is emphasised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.