Methamphetamine (METH) is an illicit toxic psychostimulant which is widely abused. Its toxic effects depend on the release of excessive levels of dopamine (DA) that activates striatal DA receptors. Inhibition of DA-mediated neurotransmission by the DA D1 receptor antagonist, SCH23390, protects against METH-induced neuronal apoptosis. The initial purpose of the present study was to investigate, using microarray analyses, the influence of SCH23390 on transcriptional responses in the rat striatum caused by a single METH injection at 2 and 4 hours after drug administration. We identified 545 out of a total of 22,227 genes as METH-responsive. These include genes which are involved in apoptotic pathways, endoplasmic reticulum (ER) stress, and in transcription regulation, among others. Of these, a total of 172 genes showed SCH23390-induced inhibition of METH-mediated changes. Among these SCH23390-responsive genes were several genes that are regulated during ER stress, namely ATF3, HSP27, Hmox1, HSP40, and CHOP/Gadd153. The secondary goal of the study was to investigate the role of DA D1 receptor stimulation on the expression of genes that participate in ER stress-mediated molecular events. We thus used quantitative PCR to confirm changes in the METH-responsive ER genes identified by the microarray analyses. We also measured the expression of these genes and of ATF4, ATF6, BiP/GRP78, and of GADD34 over a more extended time course. SCH23390 attenuated or blocked METH-induced increases in the expression of the majority of these genes. Western blot analysis revealed METH-induced increases in the expression of the antioxidant protein, Hmox1, which lasted for about 24 hours after the METH injection. Additionally, METH caused DA D1 receptor-dependent transit of the Hmox1 regulator protein, Nrf2, from cytosolic into nuclear fractions where the protein exerts its regulatory functions. When taken together, these findings indicate that SCH23390 can provide protection against neuronal apoptosis by inhibiting METH-mediated DA D1 receptor-mediated ER stress in the rat striatum. Our data also suggest that METH-induced toxicity might be a useful model to dissect molecular mechanisms involved in ER stress-dependent events in the rodent brain.
Stromal cells derived from collagenase-digested benign hyperplastic adult prostates were isolated and grown in culture. Androgen and oestrogen receptor status were determined and growth in response to mibolerone (a synthetic androgen) and oestradiol-17 beta was measured. In addition, the ability of oestrogens to regulate the androgen receptor in stromal cells was investigated. [3H]Thymidine incorporation into DNA was stimulated by mibolerone in primary and secondary cultures, but sensitivity was lost with subsequent passages. Androgen stimulation of [3H]thymidine incorporation was consistently inhibited by the anti-androgen cyproterone acetate. Oestradiol-17 beta also stimulated [3H]thymidine incorporation into DNA, and this effect was inhibited by the anti-oestrogen tamoxifen. Sensitivity to oestradiol was lost with subsequent passages. A combination of mibolerone and oestradiol was not synergistic in increasing [3H]thymidine incorporation into DNA, but maximal stimulation occurred at 100-fold lower concentrations of mibolerone and oestradiol when the two hormones were applied in combination. Specific high-affinity [3H]mibolerone- and [3H]oestradiol-binding sites were demonstrated by radioligand binding in intact cells. The affinity for oestradiol binding to its receptor exceeded that quantified for mibolerone binding to the androgen receptor, whilst the number of oestradiol-binding sites was approximately tenfold less than that quantified for mibolerone. Treatment with oestradiol down-regulated the number of [3H]mibolerone binding sites 1.7-fold (P < 0.005) as early as day 2 after oestradiol treatment. In conclusion, we successfully cultured stromal cells derived from hyperplastic prostates which retained sensitivity to androgen and oestrogen.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.