Three-dimensional winds obtained with an airborne Doppler lidar are used to investigate the spatial structure of topographically driven flows in complex coastal terrain in Southern California. The airborne Doppler lidar collected four hours of data between the surface and 3000 m MSL along a 40-km segment of the Salinas Valley during the afternoon of 12 November 2007. The airborne lidar measurements, obtained at horizontal and vertical resolutions of approximately 1500 and 50 m, respectively, reveal a detailed spatial structure of the atmospheric flows within the valley and their associated aerosol features. Clear skies prevailed on the flight day with northwesterly synoptic flows around 10 m s 21 . The data document a shallow sea breeze making a transition into an upvalley flow in the Salinas Valley that accelerates in the upvalley direction. Along with the acceleration of the upvalley wind, the lidar data indicate the presence of enhanced sinking motions. No return flows associated with the sea-breeze or upvalley flows are observed. While synoptic flows are aligned along the valley axis in the upvalley direction, lidar data indicate the presence of a northerly crossvalley flow around the height of the surrounding ridges. This flow intrudes into the valley atmosphere and induces, along with thermally driven slope flows on the sunlit valley sidewall, a cross-valley circulation that causes an asymmetric distribution of the aerosols. This study demonstrates the large potential of airborne Doppler lidar data in describing flows in complex terrain.
Airborne Doppler wind lidars are increasingly being used to measure winds in the lower atmosphere at higher spatial resolution than ever before. However, wind retrieval in the range gates closest to the earth’s surface remains problematic. When a laser beam from a nadir-pointing airborne Doppler wind lidar intercepts the ground, the return signal from the ground mixes with the windblown aerosol signal. As a result, winds in a layer adjacent to the surface are often unreliable and removed from wind profiles. This paper describes the problem in detail and discusses a two-step approach to improve near-surface wind retrievals. The two-step approach involves removing high-intensity ground returns and identifying and tracking aerosol radial velocities in the layer affected by ground interference. Using this approach, it is shown that additional range gates closer to the surface can be obtained, thereby further enhancing the potential of airborne Doppler lidar in atmospheric applications. The benefits of the two-step approach are demonstrated using measurements acquired over the Salinas Valley in central California. The additional range gates reveal details of the wind field that were previously not quantified with the original approach, such as a pronounced near-surface wind speed maximum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.