Gas-liquid reactors pose transfer difficulties due to diffusion effects. It is necessary to master the aeration and hydrodynamics of the medium to conduct the reaction well and get a good performance. For this purpose, a study in a submerged membrane bioreactor with a useful volume of 30L, consisting of a microfiltration membrane with an average pore size of 0.14 mm having an effective surface area of 0.2 m2 and a PVC cylindrical air diffuser of radius 4 cm has been studied. The saline tracing method associated with a conductimetric follow-up made it possible to determine the residence times and the mixing time in the reactor at 4 different points both in recirculation and in the absence of recirculation. Gas retention was measured by the manometric method. The experiments were carried out at different temperatures of 25 ° C, at 45 ° C, with a variable air flow rate of 0.5 to 16 mL / s and different solutions (osmosis water, ammonium formate solution, solution ammonium formate + salt, synthetic rubber effluent). The results show that the mixing time varies from one point to another and the recirculation of the mixture reduces the mixing time. One of the positions is limiting, the transfer is done most by diffusion with a mixing time of 115 min without circulation and 65 min with circulation. Gas retention increases with aeration rate and temperature. On the other hand, the more the medium becomes rich in organic substances, the more the gaseous retention decreases. The homogeneous fine-bubble regime is obtained for an air flow rate of between 3 and 10 mL / s of aeration. Beyond this flow rate, the regime becomes heterogeneous without a transition phase for ammonium formate and formate ammonium + salt solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.