In the framework of the heavy-ion tumour therapy project at GSI we investigated the nuclear fragmentation of 200 AMeV carbon ions stopping in a 12.78-cm thick water absorber. Fast neutrons and charged particles emerging from the target were registered at forward angles between 0 degrees and 30 degrees with a DeltaE-E-telescope consisting of an NE102 and a BaF2 scintillator. We obtained neutron energy spectra and angular distributions and derived the neutron yield in the energy range from 10 to 500 MeV in the forward hemisphere. In addition, we performed fragmentation measurements in actual patient treatment irradiations. The resulting angular distributions of neutrons and charged particles as well as their yields are similar to those obtained with the water absorber.
High-energy (12)C ions offer favourable conditions for the treatment of deep-seated local tumours. Several facilities for the heavy ion therapy are planned or under construction, for example the new clinical ion-therapy unit HIT at the Radiological University Clinics in Heidelberg. In order to improve existing treatment planning models, it is essential to evaluate the secondary fragment production and to include these contributions to the therapy dose with higher accuracy. Secondary neutrons are most abundantly produced in the reactions between (12)C beams and tissues. The dose contribution to tissues by a neutron is fairly small compared with the projectile and the other charged fragments due to no ionisation and the small reaction cross-sections; however, it distributes in a considerably wider region beyond the bragg-peak because of the strong penetrability. Systematic data on energy spectra and doses of secondary neutrons produced by (12)C beams using water targets of different thicknesses for various detection angles have therefore been measured in this study at GSI Darmstadt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.