Ghana thought of nuclear energy early in the 1960s but has not been able to realize this dream of generating electricity from nuclear power. Ghana’s electricity generation dates back to the Gold Coast era where the main source of electricity supply (isolated diesel generators) was owned by industrial establishments, municipalities, and other institutions. The electricity sector has developed over the years and has diversified its power generation development to take advantage of available and sustainable sources of energy, mainly hydro, natural gas, liquefied petroleum products, and renewables. These sources sought to increase the electricity production capacity in the country, but unfortunately, it has not been able to catch up with the rate of economic growth, urbanization, industrialization, and rural electrification projects. This has led to Ghana’s persistent energy crisis, with inadequate and unpredictable power supply coupled with erratic and prolonged cuts of electricity to homes, industries, and businesses which is now colloquially referred to in the local parlance as “dumsor.” The Government of Ghana and key stakeholders have therefore decided to add nuclear energy to the energy mix of the country to complement the country’s two main energy sources being hydro and thermal electricity. The details of the developments in the electricity sector leading to the choice of nuclear energy as the best solution for Ghana have been outlined.
Accidental release of gaseous or liquid effluents is a critical issue and of a greater concern to the nuclear industry when it comes to the protection of the public and the environment. The emphasis becomes paramount when the release involves particulate of radiation particles. This paper provides a comprehensive insight report on an account of a research investigation carried out in addressing a radiological safety issue of Ghana’s Miniature Neutron Source Reactor (MNSR) during its core conversion project. The amounts of Strontium-90 (Sr-90) and Krypton-85 (Kr-85) effluents presumably released from the reactor hall to the surroundings and the consequential emission radiation to the working area within a 200 m radius were analyzed for a six-month working period. The objective was to estimate specifically the approximate total effective dose equivalent (TEDE) of Sr-90 and Kr-85 by considering a conjectural accident scenario using a well-recognized and user-friendly known atmospheric dispersion model before the preparatory period. The maximum TEDE value recorded at a ground deposition value of 4.6E − 01 kBq/m2 was approximately 1.80E − 02 mSv and 4.90E − 4 mSv for Sr-90 and Kr-85, respectively, at a maximum distance of 0.1 km from the source. The estimated dose values recorded were found to be within the recommended regulatory safety limits of 50 mSv for onsite workers and 1 mSv for the general public. No adverse effect was experienced with respect to human health and the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.