Rainfall variability and water scarcity continue to hamper the food and income security of smallholder farming systems in poverty-affected regions. Innovations in soil and water management, especially in the drylands, are critical for meeting food security and water productivity targets of Agenda 2030. This study analyzes how rainfed agriculture can be intensified with marginal impact on the landscape water balance. The impact of rainwater harvesting structures on landscape hydrology and associated agricultural services was analyzed in the semi-arid Jhansi district of Bundelkhand region in central India. The Parasai-Sindh pilot watershed was subjected to a 5-year (2012-2016) monitoring of rainfed system improvements in water availability and crop intensification due to surface water storage (haveli system), check dams, and field infiltration structures. Hydrological processes were monitored intensively to analyze the landscape's water balance components. Rainwater harvesting (RWH) structures altered the landscape's hydrology, limiting average surface runoff from 250 mm/year to 150 mm/year over the study period. Groundwater levels increased by 2-5 m (m), alleviating water scarcity issues of the communities in recurring dry years. Nearly 20% of fallow lands were brought under cultivation.
Many environmental benefits result from watershed interventions in the semi-arid tropics. Environmental benefits may be defined as the condition and process through which ecosystems sustain and fulfill human life, including the provision of food and other goods. The spillover effects of these benefits range from an increase in household welfare condition to ecosystem sustainability. An attempt is made in this paper to assess these benefits in the context of Indian Semiarid tropics using primary data collected from two micro watersheds (Rajasamadhiyala and Shekta watersheds). Results indicate that groundwater availability has substantially increased and soil conservation has brought changes in cropping patterns with high-value crops. Rainwater harvesting through check dams, causeway cum check dams, percolation tanks, farm ponds and earthen bunds have significantly increased water storage capacity and water availability along with doubling the production of major crops. Significant increases in irrigated area, cropping intensity along with diversification of crops from traditional to commercial cash crops were recorded in the watersheds. Assessing the environmental benefits accrued from the watershed development approach may lead to the identification of 'keystone elements' in a landscape that have a substantial impact by providing multi-functions. The integrated watershed management practices adopted in the two micro watersheds substantially improved the sustainability in these watersheds. Using available methods we have assessed the environmental benefits of micro watersheds in the Indian semi-arid tropics.
Agricultural water management (AWM) interventions play an important role in ensuring sustainable food production and mitigating climate risks. This study was carried out in a watershed located in a low rainfall (400-600 mm) region of western India. The Soil and Water Assessment Tool model was calibrated using surface runoff, soil loss, and reservoir storage levels, between the year 2000 and 2006. The investigation indicated that the various AWM interventions increased groundwater recharge from 30 mm/year to 80 mm/year and reduced surface runoff from 250 mm/year to 100 mm/year. The intervention structures were refilled two to three times during the monsoon season depending on rainfall intensity and duration. The interventions have the advantage of building a resilient system by enhancing groundwater availability even in dry years, stimulating crop intensification and protecting the landscape from severe erosion. The results indicate that soil erosion has been reduced by more than 75% compared to the nonintervention situation. Moreover, the AWM interventions led to the cultivation of 100-150 ha of fallow land with high-value crops (horticulture, vegetables, and fodder). Household income increased by several folds compared to the nonintervention situation. The study showed about 50% reduction in downstream water availability, which could be a major concern. However, there are a number of ecosystem trade-offs such as improved base flow to the stream and reduction in soil loss that should be considered. The study is of great importance to stakeholders to decide on the optimal design for AWM interventions to achieve sustainable development goals.
PurposeLaser land leveling (LLL) is a climate-smart technology that improves water use efficiency and reduces risk in crop cultivation due to weather variability. Hence, this technology is useful for cultivating water-intensive crops in a sustainable way. Given this background, the state government of Karnataka initiated to promote LLL in drought-prone districts and selected Raichur district for implementation. Moreover, farmers in this district had observed drought situation during monsoon paddy growing season in 2018. Therefore, this study attempts to investigate the importance of LLL technology for paddy cultivation under drought conditions.Design/methodology/approachA primary survey with 604 farmer households had been conducted in Raichur in 2018. Among them, 50% are adopters of LLL who have been selected purposively and rest 50% are non-adopters who have grown paddy in the adjacent or nearest plot of the laser-leveled plot. The adoption and causal impact of LLL has been estimated using propensity score matching, coarsened exact matching and endogenous switching regression methods.FindingsThe result reveals a positive and significant impact of LLL on paddy yield and net returns to the farmers. The results indicate an increment of 12 and 16% in rice yield and net income, respectively, for LLL adopters in comparison to the non-adopters of LLL.Research limitations/implicationsThe major limitation of the study is that it does not adopt the method of experimental study due to certain limitations; hence, the authors employed a quasi-experimental method to look at the possible impact of adoption of LL.Originality/valueThere have been various agronomic studies focusing on the ex-ante assessment of the LLL. This study is an ex-post assessment of the technology on the crop yield and farmers' income in a dry semi-arid region of India, which, according to the authors, is the first in this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.