Particle image velocimetry and thermal measurements using thermocouples are used to measure the buoyant flow of a simplified full-scale model of an engine compartment. The engine block surface temperature and exhaust heaters are kept at about 100 and 600°C, respectively. Thermal measurements include enclosure surface temperature, temperature difference on the enclosure wall at midplane, engine block temperatures, and air temperatures under the hood. The highest surface temperatures were concentrated near the top of the enclosure around the exhaust heaters. This effect was due primarily to radiation from the exhaust heaters. Highest measured air temperature was about 300°C immediately above the right exhaust heater. The measured dominant flow structures are two larger counter rotating vortices over the top right side of the engine block and two counter rotating vortices over the top left side. These flow structures weaken considerably during the first 35 min of the transient cool down of the engine block and the exhaust heaters. Colder ambient air is sucked into the engine compartment at the vents near the bottom of the compartment with some exiting as hot air through the top slots. The time scale of the fluid exchange at the vents is in the order of seconds, indicating that this process is occurring very slowly.
A robust method for creating Cu-plated through-wafer vias for AlGaN∕GaN high electron mobility transistors on Si is reported. The initial 70μm deep vias with diameters of 50μm are created by deep Si reactive ion etching, followed by pulsed Cu electroplating and mechanical polishing to planarize the metal. This is an attractive approach for increasing the effective thermal conductivity of the composite substrate for very high power device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.