Autosomal recessive generalized myotonia (Becker's disease) (GM) and autosomal dominant myotonia congenita (Thomsen's disease) (MC) are characterized by skeletal muscle stiffness that is a result of muscle membrane hyperexcitability. For both diseases, alterations in muscle chloride or sodium currents or both have been observed. A complementary DNA for a human skeletal muscle chloride channel (CLC-1) was cloned, physically localized on chromosome 7, and linked to the T cell receptor beta (TCRB) locus. Tight linkage of these two loci to GM and MC was found in German families. An unusual restriction site in the CLC-1 locus in two GM families identified a mutation associated with that disease, a phenylalanine-to-cysteine substitution in putative transmembrane domain D8. This suggests that different mutations in CLC-1 may cause dominant or recessive myotonia.
Focal dermal hypoplasia (FDH) is an X-linked dominant multisystem birth defect affecting tissues of ectodermal and mesodermal origin. Using a stepwise approach of (i) genetic mapping of FDH, (ii) high-resolution comparative genome hybridization to seek deletions in candidate chromosome areas and (iii) point mutation analysis in candidate genes, we identified PORCN, encoding a putative O-acyltransferase and potentially crucial for cellular export of Wnt signaling proteins, as the gene mutated in FDH. The findings implicate FDH as a developmental disorder caused by a deficiency in PORCN.
The development of muscle cells involves the action of myogenic determination factors. In this report, we show that human skeletal muscle tissue contains, besides the previously described Myf‐5, two additional factors Myf‐3 and Myf‐4 which represent the human homologues of the rodent proteins MyoD1 and myogenin. The genes encoding Myf‐3, Myf‐4 and Myf‐5 are located on human chromosomes 11, 1, and 12 respectively. Constitutive expression of a single factor is sufficient to convert mouse C3H 10T1/2 fibroblasts to phenotypically normal muscle cells. The myogenic conversion of 10T1/2 fibroblasts results in the activation of the endogenous MyoD1 and Myf‐4 (myogenin) genes. This observation suggests that the expression of Myf proteins leads to positive autoregulation of the members of the Myf gene family. Individual myogenic colonies derived from MCA C115 cells (10T1/2 fibroblast transformed by methylcholanthrene) express various levels of endogenous MyoD1 mRNA ranging from nearly zero to high levels. The Myf‐5 gene was generally not activated in 10T1/2 derived myogenic cell lines but was expressed in some MCA myoblasts. In primary human muscle cells Myf‐3 and Myf‐4 mRNA but very little Myf‐5 mRNA is expressed. In mouse C2 and P2 muscle cell lines MyoD1 is abundantly synthesized together with myogenin. In contrast, the rat muscle lines L8 and L6 and the mouse BC3H1 cells express primarily myogenin and low levels of Myf‐5 but no MyoD1. Myf‐4 (myogenin) mRNA is present in all muscle cell lines at the onset of differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)
DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate genes for developmental diseases including autism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.