Multilayer structures of cobalt and silicon have been deposited as an ohmic contact on n-type 4H-SiC substrates in order to obtain lower contact resistance and higher thermal stability. The metal structures were prepared by using electron beam evaporation on top of the silicon face of the 4H-SiC substrates, and were annealed in an atmosphere of argon with 10% hydrogen. The metal film thickness was monitored during the film deposition, and the ratio of the cobalt and silicon was fixed at 0.5 for the formation of the silicon-rich silicide structure (CoSi 2 ). The electrical property of the ohmic contact has been significantly improved by the reduction of the oxide content in the metal contact layer. A two-step annealing process was employed to reduce oxidation problems that may occur in the heat treatment at high temperatures. The specific contact resistance of the contact structure prepared by the two-step annealing process was measured to decrease by more than one order of magnitude compared to that prepared by one-step annealing. The best result has been obtained as 1.8 × 10 −6 cm 2 for Co/Si/Co/Si/Co metal structures after two-step annealing, at 500 • C for 600 s and 800 • C for 120 s. In the field emission scanning electron microscopy, the interface of the contact structure and SiC substrate was observed to have smooth surface morphology with CoSi 2 grains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.