Early dorsoventral pattern formation in vertebrate embryos is regulated by opposing activities of ventralizing bone morphogenetic proteins (BMPs) and dorsal-specific BMP antagonists such as Chordin, Noggin and Follistatin. Specific defects in early dorsoventral patterning have been recently found in a number of zebrafish mutants, which exhibit either a ventralized or dorsalized phenotype. One of these, the ventralized mutant chordino (originally called dino) is caused by a mutation in the zebrafish chordin homologue and interacts genetically with the dorsalized mutant swirl. In swirl mutant embryos, dorsal structures such as notochord and somites are expanded while ventral structures such as blood and nephros are missing. Here we demonstrate that the swirl phenotype is caused by mutations in the zebrafish bmp2 gene (zbmp2). While injection of mRNAs encoded by the mutant alleles has no ventralizing effect, injection of wild-type zbmp2 mRNA leads to a complete rescue of the swirl mutant phenotype. Fertile adult mutant fish were obtained, showing that development after gastrulation is not dependent on zbmp2 function. In addition zBMP2 has no maternal role in mesoderm induction. Our analysis shows that swirl/BMP2, unlike mouse BMP2 but like mouse BMP4, is required for early dorsoventral patterning of the zebrafish embryo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.