The laser intensity dependence of the recoil energies from the Coulomb explosion of small argon clusters has been investigated by resolving the contributions of the individual charge states to the ion recoil energy spectra. Between $$10^{14}$$
10
14
and $$10^{15}$$
10
15
W/cm$$^2$$
2
, the high-energy tail of the ion energy spectra changes its shape and develops into the well-known knee feature, which results from the cluster size distribution, laser focal averaging, and ionization saturation. Resolving the contributions of the different charge states to the recoil energies, the experimental data reveal that the basic assumption of an exploding homogeneously charged sphere cannot be maintained in general. In fact, the energy spectra of the high-q show distinct gaps in the yields at low kinetic energies, which hints at more complex radial ion charge distributions developing during the laser pulse impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.