Helices IV and V in the lactose permease of Escherichia coli contain the major determinants for substrate binding [Glu126 (helix IV), Arg144 (helix V), and Cys148 (helix V)]. Structural and dynamic features of this region were studied by using site-directed sulfhydryl modification of 48 single-Cys replacement mutants with N-[(14)C]ethylmaleimide (NEM) in the absence or presence of ligand. In right-side-out membrane vesicles, Cys residues in the cytoplasmic halves of both helices react with NEM in the absence of ligand, while Cys residues in the periplasmic halves do not. Five Cys replacement mutants at the periplasmic end of helix V and one at the cytoplasmic end of helix V label only in the presence of ligand. Interestingly, in addition to native Cys148, a known binding-site residue, labeling of mutant Ala122 --> Cys, which is located in helix IV across from Cys148, is markedly attenuated by ligand. Furthermore, alkylation of the Ala122 --> Cys mutant blocks transport, and protection is afforded by substrate, indicating that Ala122 is also a component of the sugar binding site. Methanethiosulfonate ethylsulfonate, an impermeant thiol reagent shown clearly in this paper to be impermeant in E. coli spheroplasts, was used to identify substituted Cys side chains exposed to water and accessible from the periplasmic side. Most of the Cys mutants in the cytoplasmic halves of helices IV and V, as well as two residues in the intervening loop, are accessible to the aqueous phase from the periplasmic face of the membrane. The findings indicate that the cytoplasmic halves of helices IV and V are more reactive/accessible to thiol reagents and more exposed to solvent than the periplasmic half. Furthermore, positions that exhibit ligand-induced changes are located for the most part in the vicinity of the residues directly involved in substrate binding, as well as the cytoplasmic loop between helices IV and V.
A novel strategy is presented for the crystallization of membrane proteins or other proteins with low solubility and/or stability. The method is illustrated with the lactose permease from Escherichia coli, in which a fusion is constructed between the permease and a 'carrier' protein. The carrier is a soluble, stable protein with its C and N termini close together in space at the surface of the protein, so that the carrier can be introduced into an internal position of the target protein. The carrier is chosen with convenient spectral or enzymatic properties, making the fusion protein easier to handle than the native molecule. Data are presented for the successful construction, expression and purification of a fusion product between lactose permease and cytochrome b(562) from E. coli. The lactose transport activity of the fusion protein is similar to that of wild-type lactose permease, and the fusion product has an absorption spectrum in the visible range which is essentially identical to that of cytochrome b(562). The fusion protein has a higher proportional polar surface area than wild-type permease, and should have better possibilities of forming the strong directional intermolecular contacts required of a crystal lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.