Pim-2 kinase is overexpressed in multiple myeloma (MM) cells to enhance their growth and survival, and regarded as a novel therapeutic target in MM. However, the impact of Pim-2 inhibition on bone disease in MM remains unknown. We demonstrated here that Pim-2 expression was also upregulated in bone marrow stromal cells and MC3T3-E1 preosteoblastic cells in the presence of cytokines known as the inhibitors of osteoblastogenesis in MM, including interleukin-3 (IL-3), IL-7, tumor necrosis factor-α, transforming growth factor-β (TGF-β) and activin A, as well as MM cell conditioned media. The enforced expression of Pim-2 abrogated in vitro osteoblastogenesis by BMP-2, which suggested Pim-2 as a negative regulator for osteoblastogenesis. Treatment with Pim-2 short-interference RNA as well as the Pim inhibitor SMI-16a successfully restored osteoblastogenesis suppressed by all the above inhibitory factors and MM cells. The SMI-16a treatment potentiated BMP-2-mediated anabolic signaling while suppressing TGF-β signaling. Furthermore, treatment with the newly synthesized thiazolidine-2,4-dione congener, 12a-OH, as well as its prototypic SMI-16a effectively prevented bone destruction while suppressing MM tumor growth in MM animal models. Thus, Pim-2 may have a pivotal role in tumor progression and bone loss in MM, and Pim-2 inhibition may become an important therapeutic strategy to target the MM cell-bone marrow interaction.
In the present study, we evaluated the safety and effectiveness of SYT-SSX-derived peptide vaccines in patients with advanced synovial sarcoma. A 9-mer peptide spanning the SYT-SSX fusion region (B peptide) and its HLA-A*2402 anchor substitute (K9I) were synthesized. In Protocols A1 and A2, vaccines with peptide alone were administered subcutaneously six times at 14-day intervals. The B peptide was used in Protocol A1, whereas the K9I peptide was used in Protocol A2. In Protocols B1 and B2, the peptide was mixed with incomplete Freund's adjuvant and then administered subcutaneously six times at 14-day intervals. In addition, interferon-a was injected subcutaneously on the same day and again 3 days after the vaccination. The B peptide and K9I peptide were used in Protocols B1 and B2, respectively. In total, 21 patients (12 men, nine women; mean age 43.6 years) were enrolled in the present study. Each patient had multiple metastatic lesions of the lung. Thirteen patients completed the six-injection vaccination schedule. One patient developed intracerebral hemorrhage after the second vaccination. Delayed-type hypersensitivity skin tests were negative in all patients. Nine patients showed a greater than twofold increase in the frequency of CTLs in tetramer analysis. Recognized disease progression occurred in all but one of the nine patients in Protocols A1 and A2. In contrast, half the 12 patients had stable disease during the vaccination period in Protocols B1 and B2. Of note, one patient showed transient shrinkage of a metastatic lesion. The response of the patients to the B protocols is encouraging and warrants further investigation. (Cancer Sci 2012; 103: 1625-1630 S ynovial sarcoma is a malignant tumor of soft tissue characterized by biphasic or monophasic histology, specific chromosomal translocation t(X;18), and its resultant SYT-SSX fusion genes.(1,2) Reported 5-year survival rates of patients with synovial sarcoma range from 64% to 77%.(3-7) In contrast, most metastatic or relapsed diseases remain incurable, indicating a need for new therapeutic options other than conventional surgery, radiotherapy, and chemotherapy.Antigen-specific peptide immunotherapy is one such option. (8)(9)(10)(11)(12) Previously, we demonstrated that SYT-SSX fusion gene-derived peptides (wild type and agretope modified) are recognized by circulating CD8 + T cells in HLA-A24 + patients with synovial sarcoma and elicit human leukocyte antigen (HLA)-restricted, tumor-specific cytotoxic responses. (13,14) Subsequent to these preclinical studies, we started a pilot clinical trial with a wild-type SYT-SSX-derived peptide vaccine. (15) In the present study, we evaluated immunologic and clinical outcomes of the vaccination trials using an agretope-modified SYT-SSX peptide and a combination of the peptide vaccine with adjuvant and interferon (IFN)-a.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.