Cytopathologic testing is one of the most critical steps in the diagnosis of diseases, including cancer. However, the task is laborious and demands skill. Associated high cost and low throughput drew considerable interest in automating the testing process. Several neural network architectures were designed to provide human expertise to machines. In this paper, we explore and propose the feasibility of using deep-learning networks for cytopathologic analysis by performing the classification of three important unlabeled, unstained leukemia cell lines (K562, MOLT, and HL60). The cell images used in the classification are captured using a low-cost, high-throughput cell imaging technique: microfluidics-based imaging flow cytometry. We demonstrate that without any conventional fine segmentation followed by explicit feature extraction, the proposed deep-learning algorithms effectively classify the coarsely localized cell lines. We show that the designed deep belief network as well as the deeply pretrained convolutional neural network outperform the conventionally used decision systems and are important in the medical domain, where the availability of labeled data is limited for training. We hope that our work enables the development of a clinically significant high-throughput microfluidic microscopy-based tool for disease screening/triaging, especially in resource-limited settings.
In the olden day's many organizations including private and government finds it difficult to mark the attendance manually. A few decades back with the research on biometrics and image processing many smart applications like face recognizers and scanners came into existence but all these apps suffer from single face scanning problem but from the past 5 years many object detection algorithms help us to classify many objects or faces at a time based on multi facial points using boundary boxes to segment the regions. Many research works are carried out for the recognition of faces without masks. With the help of detection algorithms, the proposed algorithm tries to recognize the face of the students with or without masks to mark the attendance in this pandemic situation by designing HAAR integrated with LBP and CNN to find the multiple persons based on the facial points associated with the upper nose, eyes and other regions to extract the features.
Facial expression for different emotional feelings makes it interesting for researchers to develop recognition techniques. Facial expression is the outcome of emotions they feel, behavioral acts, and the physiological condition of one's mind. In the world of computer visions and algorithms, precise facial recognition is tough. In predicting the expression of a face, machine learning/artificial intelligence plays a significant role. The deep learning techniques are widely used in more challenging real-world problems which are highly encouraged in facial emotional analysis. In this article, we use three phases for facial expression recognition techniques. The principal component analysis-based dimensionality reduction techniques are used with Eigen face value for edge detection. Then the feature extraction is performed using swarm intelligence-based grey wolf with particle swarm optimization techniques. The neural network is highly used in deep learning techniques for classification. Here we use a deep belief network (DBN) for classifying the recognized image. The proposed method's results are assessed using the most comprehensive facial expression datasets, including RAF-DB, AffecteNet, and Cohn-Kanade (CK+). This developed approach improves existing methods with the maximum accuracy of 94.82%, 95.34%, 98.82%, and 97.82% on the test RAF-DB, AFfectNet, CK+, and FED-RO datasets respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.