Melanoma skin cancer is a common disease that develops in the melanocytes that produces melanin. In this work, a deep hybrid learning model is engaged to distinguish the skin cancer and classify them. The dataset used contains two classes of skin cancer–benign and malignant. Since
the dataset is imbalanced between the number of images in malignant lesions and benign lesions, augmentation technique is used to balance it. To improve the clarity of the images, the images are then enhanced using Contrast Limited Adaptive Histogram Equalization Technique (CLAHE) technique.
To detect only the affected lesion area, the lesions are segmented using the neural network based ensemble model which is the result of combining the segmentation algorithms of Fully Convolutional Network (FCN), SegNet and U-Net which produces a binary image of the skin and the lesion, where
the lesion is represented with white and the skin is represented by black. These binary images are further classified using different pre-trained models like Inception ResNet V2, Inception V3, Resnet 50, Densenet and CNN. Following that fine tuning of the best performing pre-trained model
is carried out to improve the performance of classification. To further improve the performance of the classification model, a method of combining deep learning (DL) and machine learning (ML) is carried out. Using this hybrid approach, the feature extraction is done using DL models and the
classification is performed by Support Vector Machine (SVM). This computer aided tool will assist doctors in diagnosing the disease faster than the traditional method. There is a significant improvement of nearly 4% increase in the performance of the proposed method is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.