The contribution of brain edema to brain swelling in cases of traumatic brain injury remains a critical problem. The authors believe that cellular edema, the result of complex neurotoxic events, is the major contributor to brain swelling and that vasogenic edema, secondary to blood-brain barrier compromise, may be overemphasized. The objective of this study, therefore, was to quantify temporal water content changes and document the type of edema that forms during the acute and late stages of edema development following closed head injury (CHI). The measurement of brain water content was based on magnetic resonance imaging-determined values of tissue longitudinal relaxation time (T1-weighted imaging) and their subsequent conversion to percentage of water, whereas the differentiation of edema formation (cellular vs. vasogenic) was based on the measurement of the apparent diffusion coefficient (ADC) by diffusion-weighted imaging. A new impact-acceleration model was used to induce CHI. Thirty-six adult Sprague-Dawley rats were separated into two groups: Group I, control (six animals); and Group II, trauma (30 animals). Fast ADC measurements (localized, single-voxel) were obtained sequentially (every minute) up to 1 hour postinjury. The T1-weighted images, used for water content determination, and the diffusion-weighted images (ADC measurement with conventional diffusion-weighted imaging) were obtained at the end of the 1st hour postinjury and on Days 1, 3, 7, 14, 28, and 42 in animals from the trauma and control groups. In the animals subjected to trauma, the authors found a significant increase in ADC (10 +/- 5%) and brain water content (1.3 +/- 0.9%) during the first 60 minutes postinjury. This is consistent with an increase in the volume of extracellular fluid and vasogenic edema formation as a result of blood-brain barrier compromise. This transient increase, however, was followed by a continuing decrease in ADC that began 40 to 60 minutes postinjury and reached a minimum value on Days 7 to 14 (10 +/- 3% reduction). Because the water content of the brain continued to increase during the first 24 hours postinjury (1.9 +/- 0.9%), it is suggested that the decreased ADC indicated cellular edema formation, which started to develop soon after injury and became dominant between 1 and 2 weeks postinjury. The study provides supportive evidence that cellular edema is the major contributor to posttraumatic swelling in diffuse CHI and defines the onset and duration of the increase in cellular volume.
SummaryThe objective of this study was to quantify the temporal water content changes and document the type of edema (cellular versus vasogenic) that is occuning during both the acute and the late stages of edema development following closed head injury.Adult Sprague rats (n = 50) were separated into two groups: Group I: Sham (n = 8), Group II: Trauma (n = 42). The measurement of brain water content (BWC) was based on Tl, whereas the differentiation of edema on the measurement of the random, translational motion of water protons (apparent diffusion coefficients -AD C) by MR1.In trauma animals, we found a significant increase in ADC (105%) as well as in BWC (0.7 ±0.3%) during the first 60 minutes post injury indicating vasogenic edema formation. This transient increase; however, was followed by a continuing decrease in ADC beginning at 45 minutes post injury and reaching a minimum at days 7-14 (-103%). Since the BWC continued to increase during the next day (10.3%), it is suggested cellular edema formation started to develop soon after injury and became dominant between 1-2 weeks post injury.In conclusion we may consider, that there is a predominantly vasogenic edema formation immediately after injury and later a more widespread and slower edema formation due to a predominantly cellular swelling.
Management of cerebral perfusion pressure (CPP) is thought to be important for the treatment of traumatic brain injury (TBI). Vasopressors have been advocated as a method of increasing mean arterial blood pressure (mABP) and cerebral perfusion pressure (CPP) in the face of rising intracranial pressure (ICP). There are unresolved issues and theoretical risks about this therapy. This study therefore examined the effects of dopamine on physiological and MRI/MRS parameters in (1) a rodent model of rapidly rising intracranial pressure, caused by diffuse injury with secondary insult and (2) a model of cortical contusion. Dopamine was capable of restoring CPP in the model of rapidly rising ICP. This CPP restoration was associated with a partial restoration of CBF. Two profiles of change in the Apparent Diffusion Coefficient of water (ADCw) were seen; one in which ADCw recovered to baseline, and one in which ADCw remained persistently low. Dopamine did not alter these profiles. MRI assessed tissue water content was increased four hours after injury and dopamine increased cerebral water content in both subgroups of injury; significantly in the group with a persistently low ADCw (p < 0.01). In contusional injury, dopamine significantly worsened edema in both the ipsi- and contralateral hippocampus and temporal cortex. This occurred in the absence of ADCw changes, except in the contralateral hippocampus, where both water content and ADCw values rose with treatment, suggesting extracellular accumulation of water. In conclusion, although dopamine is capable of partially restoring CBF after injury, situations exist in which dopamine therapy worsens the swelling process. It is possible therefore that subgroups of patients exist who experience adverse effects of vasopressor treatment, and consequently the effects of vasopressor therapy in the clinical setting need to be more carefully evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.