Time-varying networks play an important role in the investigation of the stochastic processes that occur on complex networks. The ability to formulate the development of the network topology on the same time scale as the evolution of the random process is important for a variety of applications including the spreading of diseases. Past contributions have investigated random processes on timevarying networks with a purely random attachment mechanism. The possibility of extending these findings towards a time-varying network that is driven by mutual attractiveness is explored in this paper. Mutual attractiveness models are characterized by a linking function that describes the probability of the existence of an edge, which depends mutually on the attractiveness of the nodes on both ends of that edge. This class of attachment mechanisms has been considered before in the fitness based complex networks literature, but not on time-varying networks. Also, the impact of mutual selection is investigated alongside opinion formation and epidemic outbreaks. We find closed form solutions for the quantities of interest using a factorisable linking function. The voter model exhibits an unanticipated behavior as the network never reaches consensus in the case of mutual selection, but stays forever in its initial macroscopic configuration, which is a further piece of evidence that time-varying networks are very different from their static counterpart with respect to random processes that take place on them. We also find that epidemic outbreaks are accelerated by uncorrelated mutual selection compared to previously considered random attachment.
We study a class of network growth models with attachment rules governed by intrinsic node fitness. Both the individual node degree distribution and the degree correlation properties of the network are obtained as functions of the network growth rules. We also find analytical solutions to the inverse, design, problems of matching the growth rules to the required (e.g., power-law) node degree distribution and more generally to the required degree correlation function. We find that the design problems do not always have solutions. Among the specific conditions on the existence of solutions to the design problems is the requirement that the node degree distribution has to be broader than a certain threshold and the fact that factorizability of the correlation functions requires singular distributions of the node fitnesses. More generally, the restrictions on the input distributions and correlations that ensure solvability of the design problems are expressed in terms of the analytical properties of their generating functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.