Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and MALDI MS imaging are ubiquitous analytical methods in medical, pharmaceutical, biological, and environmental research. Currently, there is a strong interest in the investigation of low molecular weight compounds (LMWCs), especially to trace and understand metabolic pathways, requiring the development of new matrix systems that have favorable optical properties and a high ionization efficiency and that are MALDI silent in the LMWC area. In this paper, five conjugated polymers, poly{[ N, N'-bis(2-octyldodecyl)-naphtalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-5,5'(2,2'-bithiophene)} (PNDI(T2)), poly(3-dodecylthiophene-2,5-diyl) (P3DDT), poly{[2,3-bis(3-octyloxyphenyl)quinoxaline-5,8-diyl]- alt-(thiophene-2,5-diyl)} (PTQ1), poly{[ N, N'-bis(2-octyldodecyl)-isoindigo-5,5'-diyl] -alt-5,5'(2,2'-bithiophene)} (PII(T2)), and poly(9,9-di- n-octylfluorenyl-2,7-diyl) (P9OFl) are investigated as matrices. The polymers have a strong optical absorption, are solution processable, and can be coated into thin films, allowing a vast reduction in the amount of matrix used. All investigated polymers function as matrices in both positive and negative mode MALDI, classifying them as rare dual-mode matrices, and show a very good analyte ionization ability in both modes. PNDI(T2), P3DDT, PTQ1, and PII(T2) are MALDI silent in the full measurement range (> m/ z = 150k), except at high laser intensities. In MALDI MS experiments of single analytes and a complex biological sample, the performance of the polymers was found to be as good as two commonly used matrices (2,5-DHB for positive and 9AA for negative mode measurements). The detection limit of two standard analytes was determined as being below 164 pmol for reserpine and below 245 pmol for cholic acid. Additionally P3DDT was used successfully in first MALDI MS imaging experiments allowing the visualization of the tissue morphology of rat brain sections.
The synthesis of a naphthalene diimide bithiophene copolymer P(EO-NDIT2) with branched, base-stable, and purely ether-based side chains is presented. Stille polycondensation leads to high molecular weights that are limited by methyl transfer and eventually T2 homocouplings. While extensive solution aggregation hampers molecular weight determination by conventional methods, NMR spectroscopy allows identification of both T2- (H and methyl) and NDI-related (methyl) end groups, enabling the determination of absolute number average molecular weights larger than M n,NMR ∼100 kg/mol. Solvent- and temperature-dependent aggregation in solution is investigated by NMR and UV–vis spectroscopy. These results are used for solution doping of P(EO-NDIT2) with N-benzimidazole-based n-dopants. Spin coating from heated chlorobenzene solutions and using 4-(2,3-dihydro-1,3-dimethyl-1H-benzoimidazol-2-yl)-N,N-diisopropylaniline (N-DiPrBI) as the dopant leads to homogeneous films with highest conductivities up to 10–2 S/cm. Generally, N-DiPrBI concentrations as low as ∼5 wt % are sufficient to increase conductivity by orders of magnitude. Strikingly, maximum power factors up to 0.11 μW/mK2, although limited by conductivity, are achieved for the highest molar mass sample at a low dopant concentration of 2 wt % N-DiPrBI only.
Matrix‐assisted laser desorption/ionization mass spectrometry (MALDI MS) usually employs highly crystalline small‐molecule matrices, and the analyte is interpreted as being co‐crystallized with the matrix. We recently showed that semi‐crystalline polymers are efficient matrices for the detection of low‐molecular‐weight compounds (LMWCs) in MALDI MS and MALDI MS Imaging, and are dual‐mode, i. e., enabling both positive and negative modes. The matrix performances of two fluorene/napthalene diimide co‐polymers P(TNDIT‐Fl(C4C2)) and P(TNDIT‐Fl(C10C8)) were investigated and compared. Both are fully amorphous according to XRD measurements, show high relative absorption values at the wavelength of common MALDI lasers (λNd:YAG=355 nm: C4C2=73 %; C10C8=67 %), and are solution processable. As matrices, they are dual‐mode, and enable the detection of LMWCs while being mostly MALDI‐silent. Compared with semicrystalline polymer matrices, the amorphous matrices give similar or better signal intensities, thus indicating that analyte inclusion takes place in the amorphous part of the polymer matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.