Multidisciplinary studies of zircons, rock-forming minerals and the whole-rock composition of granulite samples from the Bug Granulite–Gneiss Complex, Ukraine (including ion microprobe REE analysis, secondary ion mass spectrometry (SIMS) U–Pb and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) Lu–Hf analysis of zircons from a single sample) have revealed three major stages in the geological evolution of the complex. (i) At 3.66 Ga, a mafic intrusion contaminated with felsic rocks formed, as evidenced by 3.74 Ga zircon xenocrysts with inclusions of plagioclase, K-feldspar and quartz. (ii) At 3.59–3.55 Ga, high-temperature and high- to moderate-pressure granulite-facies metamorphism accompanied by migmatization and deformation resulted in the formation of mafic granulites. (iii) At 2.1–2.0 Ga, metamorphic overprinting occurred, and metatrachybasaltic dykes intruded at approximately 2.0 Ga. The metamorphic mineral assemblages recorded in the dykes formed at temperatures similar to those of the 3.59–3.55 Ga metamorphism but at pressures 2–3 kbar lower. This metamorphism disturbed the Sm–Nd whole-rock system, altered the Hf isotope system of the older zircons and resulted in Pb loss in small zircon grains. This complex event history recorded in zircons from a single rock corresponds to major stages of the geological evolution of both the Dniester–Bug Province and the entire Ukrainian Shield.
The Precambrian rocks of the Keivy Terrane reveal five types of carbonaceous matter (CM): Fine-grained, flaky, nest, vein, and spherulitic. These types differ in their distribution character, carbon isotope composition, and graphitization temperatures calculated by the Raman spectra of carbonaceous material (RSCM) geothermometry. Supracrustal rocks of the Keivy Terrane contain extremely isotopically light (δ13CPDB = –43 ± 3‰) carbon. Presumably, its source was a methane–aqueous fluid. According to temperature calculations, this carbon matter and the host strata underwent at least two stages of metamorphism in the west of the Keivy Terrane and one stage in the east. The CM isotope signatures of several samples of kyanite schists (δ13CPDB = –33 ± 5‰) are close to those of oils and oil source rocks, and they indicate an additional carbon reservoir. Thus, in the Keivy territory, an oil-and-gas bearing basin has existed. Heavy carbon (δ13CPDB = −8 ± 3‰) precipitated from an aqueous CO2-rich fluid is derived from either the lower crust or the mantle. This fluid probably migrated from the Keivy alkaline granites into the surrounding rocks previously enriched with “methanogenic” carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.