Patterns of ovarian follicle development were monitored daily in Holstein-Friesian cows that had two (n = 4) or three (n = 4) waves of ovarian follicle development during a single estrous cycle. The plasma from daily blood samples was used in assays for inhibin A, FSH, progesterone, and estradiol-17beta. Mean cycle lengths for cows with two and three waves were 21.8 and 25.3 days, respectively (P < 0.02). Although the average number of follicles >3-mm diameter on each pair of ovaries was similar for two- and three-wave cows on Days 2, 3, and 4 (Day 0 = day of ovulation; 8.6 vs. 9.6 follicles), there were more follicles >6-mm diameter on the ovaries of cows with two waves on Days 3 and 4. This difference was associated with a shorter interval from wave emergence to peak concentrations of inhibin A during the first wave in two-wave cows (2.0 vs. 3.8 days; P = 0.03) and with higher peak concentrations (474 vs. 332 pg/ml; P = 0.03). Differences in peak FSH concentrations were not significant (1.7 vs. 1.3 ng/ml; P = 0.10) and were inversely related to inhibin A concentrations. The peak concentrations of inhibin A and FSH in the second nonovulatory wave in the three-wave cows were similar to the low concentrations measured in the first wave (292 vs. 332 pg/ml of inhibin A, 1.3 vs. 1.3 ng/ml of FSH; P > 0.20). Average peak concentrations of inhibin A and FSH were similar during the ovulatory wave for cows with either two or three waves in a cycle (432 vs. 464 pg/ml of inhibin A, 2.3 vs. 2.1 ng/ml of FSH; P > 0.3). The lower concentrations of FSH during the emergence of the first follicular wave in cows with three-wave cycles may have reduced the rate of development of some of the follicles and reduced the concentrations of inhibin A. This pattern of lower concentrations of FSH and inhibin A was repeated in the second nonovulatory wave but not in the ovulatory wave. Subtle differences in the concentrations of these two hormones may underlie the mechanism that influences the number of waves of ovarian follicle development that occur during the bovine estrous cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.