Insulin-like growth factors (IGFs), IGF binding proteins (IGFBPs), and IGFBP proteases are important in ovarian function. IGFs stimulate granulosa steroidogenesis, an effect that is inhibited by IGFBP-4 and augmented by IGFBP-4 proteolysis. We have recently identified the IGFBP-4 protease in human ovarian follicular fluid (FF) as pregnancy-associated plasma protein-A (PAPP-A). In the current study, we identify the IGFBP-4 protease secreted by cultured human ovarian granulosa cells as PAPP-A, based on specific immunoinhibition and immunodepletion of the IGFBP-4 protease activity with PAPP-A polyclonal antibodies and immunorecognition by PAPP-A monoclonal antibodies in ELISA. PAPP-A was barely detectable in conditioned media (CM) from granulosa derived from =9 mm androgen-dominant follicles, but was secreted by cultured granulosa from estrogen-dominant follicles >/=9 mm, coincident with dominant follicle selection, and by luteinizing granulosa. PAPP-A levels in CM from the latter did not change in response to IGF-II or hCG (100 ng/mL). A naturally occurring inhibitor of PAPP-A, proform of eosinophil major basic protein (proMBP), was detected by ELISA in estrogen-dominant follicular fluid FF, but not in CM from granulosa or luteinizing granulosa cells treated with IGF-II (0-200 ng/mL), FSH (0-100 ng/mL) or hCG (0-100 ng/mL), suggesting an alternative source (other than granulosa) for proMBP, compared to PAPP-A. The data demonstrate granulosa cells as a source of PAPP-A in human ovary and suggest that PAPP-A is a marker of ovarian follicle selection and corpus luteum formation. In addition the data suggest complex regulation of this system in human ovary.
The IGF family plays an important role in implantation and placental physiology. IGF-II is abundantly expressed by placental trophoblasts, and IGF binding protein (IGFBP)-4, a potent inhibitor of IGF actions, is the second most abundant IGFBP in the placental bed, expressed exclusively by the maternal decidua. Proteolysis of IGFBP-4 results in decreased affinity for IGF peptides, thereby enhancing IGF actions. In the current study, we have identified the IGFBP-4 protease and its inhibitor in human trophoblast and decidualized endometrial stromal cell cultures, and we have investigated their regulation in an effort to understand control of IGF-II bioavailability at the placental-decidual interface in human implantation. IGFBP-4 protease activity was detected in conditioned media (CM) from human trophoblasts and decidualized endometrial stromal cells using (125)I-IGFBP-4 substrate. Identification of the IGFBP-4 protease as pregnancy-associated plasma protein-A (PAPP-A) was confirmed by specific immunoinhibition and immunodepletion of the IGFBP-4 protease activity with specific PAPP-A antibodies. The IGFBP-4 protease activity was IGF-II-dependent in trophoblast CM. In decidualized stromal CM, PAPP-A/IGFBP-4 protease activity was also IGF-II-dependent, but was evident only when IGF-II was added in molar excess of the predominant IGFBP in decidualized stromal cell CM, IGFBP-1, supporting bioavailable IGF-II as a key cofactor of IGFBP-4 proteolysis by PAPP-A. Cultured first and second trimester human trophoblasts (n = 5) secreted PAPP-A into CM with mean +/- SEM levels of 172.4 +/- 32.8 mIU/liter.10(5) cells, determined by specific ELISA. PAPP-A in trophoblast CM (n = 3) and did not change in the presence of IGF-II (1-100 ng/ml). Cultured human endometrial stromal cells (n = 4) secreted low levels of PAPP-A (6.25 +/- 3.6 mIU/liter.10(5) cells). A physiological inhibitor of PAPP-A, the proform of eosinophil major basic protein (proMBP), was detected in trophoblast CM at levels of 1853 +/- 308 mIU/liter.10(5) cells, determined by specific ELISA, and was nearly undetectable in CM of human endometrial stromal cells. Upon in vitro decidualization of endometrial stromal cells with progesterone, PAPP-A levels in CM increased nearly 9-fold without a concomitant change in proMBP. In contrast to the experiments with trophoblasts, IGF-II and the IGF analogues, Leu(27) IGF-II, and Des (1-6) IGF-II, resulted in a dose-dependent decrease of PAPP-A levels in decidualized endometrial stromal CM by 70-90%, and a dose-dependent increase in proMBP of 14- to 41-fold. The data demonstrate conclusively that the IGF-II-dependent IGFBP-4 protease of human trophoblast and decidual origin is PAPP-A. Furthermore, the differential regulation of decidual PAPP-A and proMBP by insulin-like peptides supports a role for trophoblast-derived IGF-II as a paracrine regulator of these maternal decidual products that have the potential to regulate IGF-II bioavailability at the trophoblast-decidual interface. Overall, the data underscore potential roles for ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.