We present an improved search for neutrinoless double-beta (0νββ) decay of 136 Xe in the KamLANDZen experiment. Owing to purification of the xenon-loaded liquid scintillator, we achieved a significant reduction of the 110m Ag contaminant identified in previous searches. Combining the results from the first and second phase, we obtain a lower limit for the 0νββ decay half-life of T 0ν 1=2 > 1.07 × 10 26 yr at 90% C.L., an almost sixfold improvement over previous limits. Using commonly adopted nuclear matrix element calculations, the corresponding upper limits on the effective Majorana neutrino mass are in the range 61-165 meV. For the most optimistic nuclear matrix elements, this limit reaches the bottom of the quasidegenerate neutrino mass region. DOI: 10.1103/PhysRevLett.117.082503 Neutrinoless double-beta (0νββ) decay is an exotic nuclear process predicted by extensions of the Standard Model of particle physics. Observation of this decay demonstrates the nonconservation of lepton number, and proves that neutrinos have a Majorana mass component. In the framework of light Majorana neutrino exchange, its decay rate is proportional to the square of the effective Majorana neutrino mass hm ββ i ≡ j P i U 2 ei m ν i j. ) provide upper limits on hm ββ i of ∼0.2-0.4 eV using available nuclear matrix element (NME) values from the literature. The sensitivities of these searches correspond to mass scales in the so-called quasidegenerate mass region.KamLAND-Zen is a double-beta decay experiment that exploits the existing detection infrastructure and radiopurity of KamLAND [5,6]. The KamLAND-Zen detector consists of 13 tons of Xe-loaded liquid scintillator (Xe-LS) contained in a 3.08-m-diameter spherical inner balloon (IB) located at the center of the KamLAND detector. The IB is constructed from 25-μm-thick transparent nylon film and is surrounded by 1 kton of liquid scintillator (LS) contained in a 13-m-diameter spherical outer balloon. The outer LS acts as an active shield. The scintillation photons are viewed by 1879 photomultiplier tubes (PMTs) mounted on the inner surface of the containment vessel. The Xe-LS consists of 80.7% decane and 19.3% pseudocumene (1,2,4-trimethylbenzene) by volume, 2.29 g=liter of the fluor PPO (2,5-diphenyloxazole), and ð2.91 AE 0.04Þ% by weight of isotopically enriched xenon gas. The isotopic abundances in the enriched xenon were measured by a residual gas analyzer to be ð90.77 AE 0.08Þ% 136 Xe, ð8.96AE 0.02Þ% 134 Xe. Other xenon isotopes have negligible presence. The two electrons emitted from 136 Xe ββ decay
LiteBIRD is a next-generation satellite mission to measure the polarization of the cosmic microwave background (CMB) radiation. On large angular scales the B-mode polarization of the CMB carries the imprint of primordial gravitational waves, and its precise measurement would provide a powerful probe of the epoch of inflation. The goal of LiteBIRD is to achieve a measurement of the characterizing tensor to scalar ratio r to an uncertainty of δr = 0.001. In order to achieve this goal we will employ a kilopixel superconducting detector array on a cryogenically cooled sub-Kelvin focal plane with an optical system at a temperature of 4 K. We are currently considering two detector array options; transition edge sensor (TES) bolometers and microwave kinetic inductance detectors (MKID). In this paper we give an overview of LiteBIRD and describe a TES-based polarimeter designed to achieve the target sensitivity of 2 µK·arcmin over the frequency range 50 to 320 GHz.
This corrects the article DOI: 10.1103/PhysRevLett.117.082503.
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry-Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre-DECIGO first and finally DECIGO in 2024.
The recent long-term shutdown of Japanese nuclear reactors has resulted in a significantly reduced reactor νe flux at KamLAND. This running condition provides a unique opportunity to confirm and constrain backgrounds for the reactor νe oscillation analysis. The data set also has improved sensitivity for other νe signals, in particular νe's produced in β-decays from 238 U and 232 Th within the Earth's interior, whose energy spectrum overlaps with that of reactor νe's. Including constraints on θ13 from accelerator and short-baseline reactor neutrino experiments, a combined three-flavor analysis of solar and KamLAND data gives fit values for the oscillation parameters of tan 2 θ12 = 0.436
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.