In this work, we obtain the approximate solution for the integrodifferential equations by adding perturbation terms to the right hand side of integrodifferential equation and then solve the resulting equation using Chebyshev-Galerkin method. Details of the method are presented and some numerical results along with absolute errors are given to clarify the method. Where necessary, we made comparison with the results obtained previously in the literature. The results obtained reveal the accuracy of the method presented in this study.
In this paper, perturbed Galerkin method is proposed to find numerical solution of an integro-differential equations using fourth kind shifted Chebyshev polynomials as basis functions which transform the integro-differential equation into a system of linear equations. The systems of linear equations are then solved to obtain the approximate solution. Examples to justify the effectiveness and accuracy of the method are presented and their numerical results are compared with Galerkin’s method, Taylor’s series method, and Tau’s method which provide validation for the proposed approach. The errors obtained justify the effectiveness and accuracy of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.