Vector analyzing power for the proton-6 He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target working at low magnetic field of 0.09 T. The results are found to be incompatible with a t-matrix folding model prediction. Comparisons of the data with g-matrix folding analyses clearly show that the vector analyzing power is sensitive to the nuclear structure model used in the reaction analysis. The α-core distribution in 6 He is suggested to be a possible key to understand the nuclear structure sensitivity. PACS numbers: 24.70.+s, 29.25.Pj Spin observables in scattering experiments have been rich sources of our understanding of nuclear structure, reaction, and interactions. One of the good examples is spin asymmetry in proton-proton and proton-nucleus (p-A) scatterings which is a direct manifestation of spinorbit coupling in the system. The first spin asymmetry measurements carried out by use of a double scattering method [1,2] clearly demonstrated that the spin-orbit coupling in nuclei is an order of magnitude stronger than that due to the relativistic effect [3]. At present the spin-orbit coupling in p-A scattering is quantitatively established through numerous experiments using polarized proton beams for stable targets.It is interesting to use spin asymmetry measurements to study unstable nuclei. Nuclei locating near the neutron drip line occasionally show distinctive structure such as halos or skins. The neutron rich 6 He nucleus is one of the typical nuclides with an extended neutron distribution. Since the extended neutron distribution is prominent at the nuclear surface and the spin-orbit coupling is, in nature, a surface phenomenon, it is stimulating to see how the extended neutron distributions affect the spin asymmetry, i.e., vector analyzing power in proton elastic scattering.In this Letter, we report new results of vector analyzing power for the p-6 He elastic scattering at 71 MeV/nucleon, measured with a newly developed polarized proton target. The results are compared with microscopic folding model calculations.Although cross sections in proton elastic scattering from 6 He have been extensively measured over a wide range of energies [4][5][6][7][8][9], until recently there had been no measurement of vector analyzing power. Since unstable nuclei are produced as secondary beams, we need a polarized proton target, practically in the solid state, for the spin-asymmetry studies. In addition, the solid polarized proton target should work under a low magnetic field of B ∼ 0.1 T for detection of recoiled protons with magnetic rigidity as low as 0.3 Tm. The traditional dynamical nuclear polarization technique [10], demanding a magnetic field higher than a few Tesla, can not be applied therefore. Although this difficulty might be overcome by applying a "spin frozen" operation, efforts to do so have not been successful so far. An alternative approach to overcome the problem is to develop a polarized target based on a new principle which...
Strongly enhanced quantum fluctuations often lead to a rich variety of quantum-disordered states. Developing approaches to enhance quantum fluctuations may open paths to realize even more fascinating quantum states. Here, we demonstrate that a coupling of localized spins with the zero-point motion of hydrogen atoms, that is, proton fluctuations in a hydrogen-bonded organic Mott insulator provides a different class of quantum spin liquids (QSLs). We find that divergent dielectric behavior associated with the approach to hydrogen-bond order is suppressed by the quantum proton fluctuations, resulting in a quantum paraelectric (QPE) state. Furthermore, our thermal-transport measurements reveal that a QSL state with gapless spin excitations rapidly emerges upon entering the QPE state. These findings indicate that the quantum proton fluctuations give rise to a QSL—a quantum-disordered state of magnetic and electric dipoles—through the coupling between the electron and proton degrees of freedom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.