Cu/ZrB2 and CuCr1Zr/ZrB2 composites were prepared by gas pressure infiltration technology. The ZrB2 powder was used as reinforcement. No interfacial reaction took place for Cu, or CuCr1Zr matrix as confirmed by transmission electron microscopy (TEM). The thermal stability of composites was very good, i.e. without any indication of possible disintegration. Composites exhibit high structural stability when subjected to 5 consecutive heating/cooling cycles to 800 • C. Maximums of relative elongations recorded for particular heating/cooling cycles slightly increased for Cu/ZrB2 composite and slightly decreased for CuCr1Zr/ZrB2 composite. However, the differences are negligible. K e y w o r d s: Cu-ZrB2 composite materials, metal matrix, ceramic powder, gas pressure infiltration, thermal expansion
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.