Our results substantiate the effectiveness of Seldi-TOF MS-based computational analysis as a tool for discovering potential biomarkers in urine samples associated with early renal injury.
Visual pigment spectra of the comma butterfly, Polygonia c-album, derived from in vivo epiillumination nation microspectrophotometry Vanhoutte, KJA; Stavenga, DG Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Abstract The visual pigments in the compound eye of the comma butterfly, Polygonia c-album, were investigated in a specially designed epi-illumination microspectrophotometer. Absorption changes due to photochemical conversions of the visual pigments, or due to lightindependent visual pigment decay and regeneration, were studied by measuring the eye shine, i.e., the light reflected from the tapetum located in each ommatidium proximal to the visual pigment-bearing rhabdom. The obtained absorbance difference spectra demonstrated the dominant presence of a green visual pigment. The rhodopsin and its metarhodopsin have absorption peak wavelengths at 532 nm and 492 nm, respectively. The metarhodopsin is removed from the rhabdom with a time constant of 15 min and the rhodopsin is regenerated with a time constant of 59 min (room temperature). A UV rhodopsin with metarhodopsin absorbing maximally at 467 nm was revealed, and evidence for a blue rhodopsin was obtained indirectly.
This paper presents a robust method for the automated segmentation and quantitative measurement of reflections from single ommatidia in the butterfly compound eye. Digital pictures of the butterfly eye shine recorded with a digital camera are processed to yield binary images from which single facet centers can be extracted using a morphological image analysis procedure. The location of the facet centers is corrected by fitting in-line facet centers to a second-order polynomial. Based on the new centers a Voronoi diagram is constructed. In the case of the eye shine images, the Voronoi diagram defines a hexagonal lattice that overlaps with the original facet borders, allowing instantaneous quantification of the reflections from single ommatidia. We provide two typical examples to demonstrate that the developed technique may be a powerful tool to characterize in vivo the heterogeneity of butterfly eyes and to study the dynamic control of the light flux by the pupil mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.