Hypertension promotes atherosclerosis and is a major source of morbidity and mortality. We show that mice lacking T and B cells (RAG-1−/− mice) have blunted hypertension and do not develop abnormalities of vascular function during angiotensin II infusion or desoxycorticosterone acetate (DOCA)–salt. Adoptive transfer of T, but not B, cells restored these abnormalities. Angiotensin II is known to stimulate reactive oxygen species production via the nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase in several cells, including some immune cells. Accordingly, adoptive transfer of T cells lacking the angiotensin type I receptor or a functional NADPH oxidase resulted in blunted angiotensin II–dependent hypertension and decreased aortic superoxide production. Angiotensin II increased T cell markers of activation and tissue homing in wild-type, but not NADPH oxidase–deficient, mice. Angiotensin II markedly increased T cells in the perivascular adipose tissue (periadventitial fat) and, to a lesser extent the adventitia. These cells expressed high levels of CC chemokine receptor 5 and were commonly double negative (CD3+CD4−CD8−). This infiltration was associated with an increase in intercellular adhesion molecule-1 and RANTES in the aorta. Hypertension also increased T lymphocyte production of tumor necrosis factor (TNF) α, and treatment with the TNFα antagonist etanercept prevented the hypertension and increase in vascular superoxide caused by angiotensin II. These studies identify a previously undefined role for T cells in the genesis of hypertension and support a role of inflammation in the basis of this prevalent disease. T cells might represent a novel therapeutic target for the treatment of high blood pressure.
Genetic deafness is common, affecting about 1 in 2,000 births. Many of these show primary abnormalities of the sensory neuroepithelia of the inner ear, as do several hearing-impaired mouse mutants, suggesting that genes involved in sensory transduction could be affected. Here we report the identification of one such gene, the mouse shaker-1 (sh1) gene. Shaker-1 homozygotes show hyperactivity, head-tossing and circling due to vestibular dysfunction, together with typical neuroepithelial-type cochlear defects involving dysfunction and progressive degeneration of the organ of Corti. The sh1 gene encodes an unconventional myosin molecule of the type VII family. Three mutations are described, two mis-sense mutations and a splice acceptor site mutation, all in the region encoding the myosin head. The myosin type VII molecule encoded by sh1 is the first molecule to be identified that is known, by virtue of its mutations, to be involved in auditory transduction.
In this paper the structure of the nonnegative steady-state solutions of a system of reactiondiffusion equations arising in ecology is investigated. The equations model a situation in which a predator species and a prey species inhabit the same region and the interaction terms are of Holling-Tanner type so that the predator has finite appetite. Prey and predator birth-rates are treated as bifurcation parameters and the theorems of global bifurcation theory are adapted so that they apply easily to the system. Thus ranges of parameters are found for which there exist nontrivial steady-state solutions.In [2] we used a decoupling technique to study the steady-state solutions of the classical equations of ecology, viz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.