Measurements of interaural cross-correlation jnds from two reference correlations at several bandwidths were obtained for constant-total-power and constant-spectral-power Gaussian noise. At a reference correlation of 1, the results indicate that for bandwidths less than or equal to 115 Hz the jnd remains at a constant value of approximately 0.004, and monotonically increases (discrimination performance degrades) to approximately 0.04 as bandwidth increases above 115 Hz. At a reference correlation of 0, the jnd decreases (discrimination performance improves (from approximately 0.7 to 0.35 as the bandwidth increases from 3 to 115 Hz, and remains at a constant value of approximately 0.35 for bandwidths greater than 115 Hz. A decrease in the spectral level causes an increase in the jnds at a reference correlation of 1, and no change in the jnds at a reference correlation of 0. Of the three models tested, none is able to completely describe all of the empirical results.
Binaural performance was measured as a function of stimulus frequency for four impaired listeners, each with bilaterally symmetric audiograms. The subjects had various degrees and configurations of audiometric losses: two had high-frequency, sensorineural losses; one had a flat sensorineural loss; and one had multiple sclerosis with normal audiometric thresholds. Just noticeable differences (jnd's) in interaural time, interaural intensity, and interaural correlation as well as detection thresholds for NoSo and NoS pi conditions were obtained for narrow-band noise stimuli at octave frequencies from 250-4000 Hz. Performance of the impaired listeners was generally poorer than that of normal-hearing listeners, although it was comparable to normal in a few instances. The patterns of binaural performance showed no apparent relation to the audiometric patterns; even the two subjects with similar degree and configuration of hearing loss have very different binaural performance, both in the level and frequency dependence of their performance. The frequency dependence of performance on individual tests is irregular enough that one cannot confidently interpolate between octaves. In addition, it appears that no subset of the measurements is adequate to characterize the performance in the rest of the measurements with the exception that, within limits, interaural correlation discrimination and NoS pi detection performance are related.
Many theoretical models of binaural interaction assume that sensitivity to interaural correlation underlies binaural unmasking. This paper explores the extent to which sensitivity to changes in interaural correlation implied by results from binaural detection experiments are consistent with sensitivity to changes in interaural correlation implied by results from binaural detection experiments are consistent with sensitivity to changes in interaural correlation measured directly in correlation discrimination experiments. The vehicle for this exploration is a simplified model of the underlying processes assumed by many models of binaural unmasking for the detection of narrow-band signals in the presence of broadband noise. Consideration is given to psychometric function slopes, detection thresholds, bandwidth effects, duration effects, level effects, and interaural-parameter effects. Although many of the results obtained from our analysis are consistent with the notion that the cue in binaural detection tasks is a change in interaural correlation, some significant inconsistencies are noted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.