Hot water treatment of beef carcass surfaces for reduction of Escherichia coli O157:H7, Salmonella typhimurium, and various indicator organisms was studied using a model carcass spray cabinet. Paired hot carcass surface regions with different external fat characteristics (inside round, outside round, brisket, flank, and clod) were removed from carcasses immediately after the slaughter and dressing process. All cuts were inoculated with bovine feces containing 10(6)/g each of rifampicin-resistant E. coli O157:H7 and S. typhimurium, or with uninoculated bovine feces. Surfaces then were exposed to a carcass water wash or a water wash followed by hot water spray (95 degrees C). Counts of rifampicin-resistant Salmonella and E. coli or aerobic plate count (APC) and coliform counts were conducted before and after each treatment. All treatments significantly reduced levels of pathogens from the initial inoculation level of 5.0 log(10) CFU/cm2. Treatments including hot water sprays provided mean reductions of initial counts for E. coli O157:H7 and S. typhimurium of 3.7 and 3.8 log, APC reductions of 2.9 log, and coliform and thermotolerant coliform count reductions of 3.3 log. The efficacy of hot water treatments was affected by the carcass surface region, but not by delaying the treatment (30 min) after contaminating the surface. Verification of efficacy of hot water interventions used as critical control points in a hazard analysis critical control point (HACCP) system may be possible using coliform counts.
An in-home beef study evaluated consumer ratings of clod steaks (n = 1,264) as influenced by USDA quality grade (Top Choice, Low Choice, High Select, and Low Select), city (Chicago and Philadelphia), consumer segment (Beef Loyals, who are heavy consumers of beef; Budget Rotators, who are cost-driven and split meat consumption between beef and chicken; and Variety Rotators, who have higher incomes and education and split their meat consumption among beef, poultry, and other foods), degree of doneness, and cooking method. Consumers evaluated each steak for Overall Like, Tenderness, Juiciness, Flavor Like, and Flavor Amount using 10-point scales. Grilling was the predominant cooking method used, and steaks were cooked to medium-well and greater degrees of doneness. Interactions existed involving the consumer-controlled factors of degree of doneness and(or) cooking method for all consumer-evaluated traits for the clod steak (P < 0.05). USDA grade did not affect any consumer evaluation traits or Warner-Bratzler shear force values (P > 0.05). One significant main effect, segment (P = 0.006), and one significant interaction, cooking method x city (P = 0.0407), existed for Overall Like ratings. Consumers in the Beef Loyals segment rated clod steaks higher in Overall Like than the other segments. Consumers in Chicago tended to give more uniform Overall Like ratings to clod steaks cooked by various methods; however, consumers in Philadelphia gave among the highest ratings to clod steaks that were fried and among the lowest to those that were grilled. Additionally, although clod steaks that were fried were given generally high ratings by consumers in Philadelphia, consumers in Chicago rated clod steaks cooked in this manner significantly lower than those in Philadelphia. Conversely, consumers in Chicago rated clod steaks that were grilled significantly higher than consumers in Philadelphia. Correlation and stepwise regression analyses indicated that Flavor Like was driving customer satisfaction of the clod steak. Flavor Like was the sensory trait most highly correlated to Overall Like, followed by Tenderness, Flavor Amount, and Juiciness. Flavor Like was the first variable to enter into the stepwise regression equation for predicting Overall Like, followed by Tenderness and Flavor Amount. For the clod steak, it is likely that preparation techniques that improve flavor without reducing tenderness positively affect customer satisfaction.
Cleaning treatments, such as high-pressure water wash at 35 degrees C or trim, alone and combined with sanitizing treatments, such as hot water (95 degrees C at the source), warm (55 degrees C) 2% lactic acid spray, and combinations of these two sanitizing methods, were compared for their effectiveness in reducing inoculated numbers (5.0 to 6.0 log CFU/cm2) of Salmonella typhimurium, Escherichia coli O157:H7, aerobic plate counts, Enterobacteriaceae, total coliforms, thermotolerant coliforms, and generic E. coli on hot beef carcass surface areas in a model carcass spray cabinet. Log reductions in numbers of all tested organisms by water wash or trim alone were significantly smaller than the log reductions obtained by the different combined treatments. Regardless of the cleaning treatment (water wash or trim) or surface area, the range for mean log reductions by hot water was from 4.0 to > 4.8 log CFU/cm2, by lactic acid spray was from 4.6 to > 4.9 log CFU/cm2, by hot water followed by lactic acid spray was from 4.5 to > 4.9 log CFU/cm2, and by lactic acid spray followed by hot water was from 4.4 to > 4.6 log CFU/cm2, for S. typhimurium and E. coli O157:H7. Identical reductions were obtained for thermotolerant coliforms and generic E. coli. No differences in bacterial reductions were observed for different carcass surface regions. Water wash and trim treatments caused spreading of the contamination to other areas of the carcass surface while providing an overall reduction in fecal or pathogenic contamination on carcass surface areas. This relocated contamination after either water wash or trim was most effectively reduced by following with hot water and then lactic acid spray. This combined treatment yielded 0% positive samples for S. typhimurium, E. coli O157:H7, thermotolerant coliforms, and generic E. coli on areas outside the inoculated areas, whereas percent positive samples after applying other combined treatments ranged from 22 to 44% for S. typhimurium, 0 to 44% for E. coli O157:H7, and 11 to 33% for both thermotolerant coliforms and generic E. coli. From data collected in this study, it is possible to choose an effective, inexpensive treatment to reduce bacterial contamination on beef carcasses. In addition, the similar reduction rates of total coliforms, thermotolerant coliforms, or generic E. coli may be useful in identifying an indicator to verify the effectiveness of the selected treatment as a critical control point in a Hazard Analysis and Critical Control Point program.
Hot beef carcass surface regions (outside round, brisket, and clod) contaminated with feces spread over a 5-cm2 (1-in2) area were cleaned using a steam-vacuum spot-cleaning system alone or combined with subsequent sanitizing treatments of hot water (95 degrees C at the nozzle), or warm (55 degrees C) 2% lactic acid spray, or combinations of these two sanitizing methods. These treatments were compared for effectiveness in reducing aerobic plate counts (APC) and counts of Enterobacteriaceae, total coliforms, thermotolerant coliforms, and Escherichia coli. All treatments significantly reduced the numbers of each group of bacteria on beef carcass surfaces. However, reductions obtained by steam vacuuming were significantly smaller than those obtained by a combination of steam vacuuming with any sanitizing treatment. No differences in bacterial reductions were observed between different carcass surface regions. Steam vacuuming reduced the number of different indicator organisms tested by ca. 3.0 log cycles but also spread the bacterial contamination to areas of the carcass surface adjacent to the contaminated sites. This relocated contamination after steam vacuuming was most effectively reduced by spraying with hot water and then lactic acid. This combined treatment consistently reduced the numbers of Enterobacteriaceae, total and thermotolerant coliforms, and E. coli to undetectable levels (<1.0 log10 CFU/cm2) on areas outside the initial 5-cm2 inoculated areas.
An in-home beef study evaluated consumer ratings of top round steaks (semimembranosus) as influenced by USDA quality grade (top Choice or high Select), city (Chicago or Philadelphia), consumer segment (beef loyalists = heavy consumers of beef; budget rotators = cost-driven and split meat consumption between beef and chicken; and variety rotators = higher incomes and education and split meat consumption among beef, poultry, and other foods), degree of doneness, cooking method, and marination. Consumers evaluated each steak for overall like, tenderness, juiciness, flavor like, and flavor amount using 10-point scales (1 = dislike extremely, not at all tender, not at all juicy, dislike extremely, and none at all to 10 = like extremely, extremely tender, extremely juicy, like extremely, and an extreme amount of flavor, respectively). Quality grade affected several consumer sensory traits, with top Choice receiving higher (P < or = 0.004) tenderness, juiciness, and flavor like scores than high Select. Consumers in Chicago rated steaks cooked "medium and less" higher for overall like, tenderness, juiciness, flavor like, and flavor amount than those in Philadelphia (city x degree of doneness; P < or = 0.020). Steaks braised by customers in Philadelphia received among the highest scores for overall like, tenderness, juiciness, flavor like, and flavor amount compared with any cooking method used by customers in Chicago (cooking method x city; P < or = 0.026). Overall like and flavor amount ratings were least (P < 0.05) for steaks that were marinated and cooked to "medium and less" degree of doneness (marination x degree of doneness; P < or = 0.014). Braised steaks received among the highest values for overall like, tenderness, juiciness, flavor like, and flavor amount when cooked to "medium and less" or "medium well and more" (cooking method x degree of doneness; P < or = 0.008). Correlation and stepwise regression analysis indicated that flavor like was pivotal in customers' satisfaction with top round steaks, and was the sensory trait most highly correlated to overall like, followed by tenderness, flavor amount, and juiciness. Preparation of top round steaks was crucial in consumers' likes and dislikes, and by improving flavor, higher consumer satisfaction may be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.