Open-world object detection (OWOD) is a challenging computer vision problem, where the task is to detect a known set of object categories while simultaneously identifying unknown objects. Additionally, the model must incrementally learn new classes that become known in the next training episodes. Distinct from standard object detection, the OWOD setting poses significant challenges for generating quality candidate proposals on potentially unknown objects, separating the unknown objects from the background and detecting diverse unknown objects. Here, we introduce a novel end-to-end transformer-based framework, OW-DETR, for open-world object detection. The proposed OW-DETR comprises three dedicated components namely, attention-driven pseudo-labeling, novelty classification and objectness scoring to explicitly address the aforementioned OWOD challenges. Our OW-DETR explicitly encodes multi-scale contextual information, possesses less inductive bias, enables knowledge transfer from known classes to the unknown class and can better discriminate between unknown objects and background. Comprehensive experiments are performed on two benchmarks: MS-COCO and PASCAL VOC. The extensive ablations reveal the merits of our proposed contributions. Further, our model outperforms the recently introduced OWOD approach, ORE, with absolute gains ranging from 1.8% to 3.3% in terms of unknown recall on the MS-COCO benchmark. In the case of incremental object detection, OW-DETR outperforms the state-of-the-art for all settings on the PASCAL VOC benchmark. Our codes and models will be publicly released.
Deep learning models tend to forget their earlier knowledge while incrementally learning new tasks. This behavior emerges because the parameter updates optimized for the new tasks may not align well with the updates suitable for older tasks. The resulting latent representation mismatch causes forgetting. In this work, we propose ELI: Energybased Latent Aligner for Incremental Learning, which first learns an energy manifold for the latent representations such that previous task latents will have low energy and the current task latents have high energy values. This learned manifold is used to counter the representational shift that happens during incremental learning. The implicit regularization that is offered by our proposed methodology can be used as a plug-and-play module in existing incremental learning methodologies. We validate this through extensive evaluation on CIFAR-100, ImageNet subset, ImageNet 1k and Pascal VOC datasets. We observe consistent improvement when ELI is added to three prominent methodologies in class-incremental learning, across multiple incremental settings. Further, when added to the state-of-the-art incremental object detector, ELI provides over 5% improvement in detection accuracy, corroborating its effectiveness and complementary advantage to the existing art. Code is available at: https:// github.com/ JosephKJ/ ELI .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.