Following infection of dissociated embryonic day 13 rat medullary raphe cells with a retrovirus encoding the temperature-sensitive mutant of SV40 large T-antigen (T-ag), a neuronal cell line, RN46A, was cloned by serial dilution. At 33 degrees C, RN46A cells express nuclear T-ag immunoreactivity and divide with a doubling time of 9 hr. Undifferentiated RN46A cells express low levels of neuron-specific enolase (NSE) and low (NF-L)-and medium (NF-M)- but not high (NF-H)- molecular-weight neurofilament proteins. Under differentiation conditions, RN46A cells cease dividing, take on a neuronal morphology, and express enhanced levels of NSE and all three NF proteins. Elevation of intracellular cAMP levels increases neurofilament protein expression, whereas activators of various other intracellular second messenger systems have no effect. Differentiated RN46A cells express low-affinity nerve growth factor (NGF) receptor (p75NGFR) and are immunoreactive using an antibody that recognizes the carboxy-terminal 13 amino acids of all three trk proteins (pan-trk). Both immunoreactivities could be potentiated by treatment with brain-derived neurotrophic factor (BDNF), NGF, and adrenocorticotropic hormone, fragment 4–10 (ACTH4–10). Differentiated RN46A cells express low levels of tryptophan hydroxylase (TPH) immunoreactivity, which could be enhanced by treatment with ACTH4–10, BDNF, or NGF. Low levels of serotonin immunoreactivity are detected in differentiated RN46A cells, and this was potentiated by differentiating RN46A cells with BDNF for 8 d and 40 mM KCl for days 4–8. HPLC analysis confirmed these immunohistochemical data. RN46A cells should prove useful to elucidate intracellular mechanisms that control neurofilament assembly and 5-HT expression in differentiating raphe neurons.
SummaryLeft ventricular (LV) myocardial atrophy and diminished cardiac function have been shown to accompany chronic human tetraplegia. These changes are attributable both to physical immobilisation and abnormal autonomic circulatory regulation imposed by a spinal cord injury (SCI). To test whether exercise training increases LV mass following chronic SCI, 8 neurologically complete quadriplegic males at 2 SCI rehabilitation and research centres underwent one month of electrically-stimulated quadriceps strengthening followed by 6 months of electrically-stimulated cycling exercise. Resting M-mode and 2-D echocardiograms were measured before and after exercise training to quantify the interventricular septal and posterior wall thicknesses at end-diastole (IVST ED and PWT ED, respectively), and the LV internal dimension at end-diastole (L VI D ED). LV mass was computed from these measurements using standard cube function geometry. Results showed a 6·5% increase in LVIDED foliowing exercise training (p<0·02), with increases in IVSTED and PWTED of 17·8 (p<0·002) and 20·3% (p
Noninvasive transcranial magnetic stimulation (TMS) of the motor cortex was used to evoke electromyographic (EMG) responses in persons with spinal cord injury (n = 97) and able-bodied subjects (n = 20, for comparative data). Our goal was to evaluate, for different levels and severity of spinal cord injury, potential differences in the distribution and latency of motor responses in a large sample of muscles affected by the injury. The spinal cord injury (SCI) population was divided into subgroups based upon injury location (cervical, thoracic, and thoracolumbar) and clinical status (motor-complete versus motor-incomplete). Cortical stimuli were delivered while subjects attempted to contract individual muscles, in order to both maximize the probability of a response to TMS and minimize the response latency. Subjects with motor-incomplete injuries to the cervical or thoracic spinal cord were more likely to demonstrate volitional and TMS-evoked contractions in muscles controlling their foot and ankle (i.e., distal lower limb muscles) compared to muscles of the thigh (i.e., proximal lower limb muscles). When TMS did evoke responses in muscles innervated at levels caudal to the spinal cord lesion, response latencies of muscles in the lower limbs were delayed equally for persons with injury to the cervical or thoracic spinal cord, suggesting normal central motor conduction velocity in motor axons caudal to the lesion. In fact, motor response distribution and latencies were essentially indistinguishable for injuries to the cervical or thoracic (at or rostral to T10) levels of the spine. In contrast, motor-incomplete SCI subjects with injuries at the thoracolumbar level showed a higher probability of preserved volitional movements and TMS-evoked contractions in proximal muscles of the lower limb, and absent responses in distal muscles. When responses to TMS were seen in this group, the latencies were not significantly longer than those of able-bodied (AB) subjects, strongly suggestive of "root sparing" as a basis for motor function in subjects with injury at or caudal to the T11 vertebral body. Both the distribution and latency of TMS-evoked responses are consistent with highly focal lesions to the spinal cord in the subjects examined. The pattern of preserved responsiveness predominating in the distal leg muscles is consistent with a greater role of corticospinal tract innervation of these muscles compared to more proximal muscles of the thigh and hip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.