Treatment outcome after surgical removal in oral carcinoma is poor due to inadequate methodologies available for marking surgical margins. Even though some methodologies for intraoperative margin assessment are under clinical and preclinical trials for other solid tumours, a promising modality for oral cancer surgery is not developed. Fluorescent-based optical imaging using Near Infrared (NIR) dyes tagged to tumour specific target will be an optimal tool for this purpose. One such target, Gastrin Releasing Peptide Receptor (GRPR) was selected for the study, and its binding peptide, TM1-IR680, was tested for its efficacy for surgical margin prediction in murine orthotopic model of oral cancer, derived from primary samples. Here, for the first time in a preclinical analysis, we show that the size and margin of oral cancer can be predicted, as revealed by 3D-imaging. Interestingly, the peptide was sensitive enough to detect lymph nodes that harboured dispersed tumour cells before colonization, which was impossible to identify by conventional histopathology. We recommend the use of TM1-NIR dyes alone or in combination with other technologies to improve the clinical outcome of oral cancer surgery.
Flowcytometry is a reliable method for identification and purification of live cells from a heterogeneous population. Since permeabilized cells cannot be sorted live in a FACS sorter, its application in isolation of functional cells largely depends on antibodies for surface markers. In various fields of biology we find intracellular markers that reveal subpopulations of biological significance. Cell cycle stage specific molecules, metastatic signature molecules, stemness associated proteins etc. are examples of potential markers that could improve the research and therapy enormously. Currently their use is restricted by lack of techniques that allow live detection. Even though a few methods like aptamers, droplet-based microfluidics and smartflares are reported, their application is limited. Here, for the first time we report a simple, cost-effective and efficient method of live sorting of cells based on the expression of an intracellular marker using a fluorophore-tagged binding peptide. The target molecule selected was a histone chaperone, HIRA, the expression of which can predict the fate of differentiating myoblast. Our results confirm that the peptide shows specific interaction with its target; and it can be used to separate cells with differential expression of HIRA. Further, this method offers high purity and viability for the isolated cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.