Determining true genetic dissimilarity between individuals is an important and decisive point for clustering and analysing diversity within and among populations, because different dissimilarity indices may yield conflicting outcomes. We show that there are no acceptable universal approaches to assessing the dissimilarity between individuals with molecular markers. Different measures are relevant to dominant and codominant DNA markers depending on the ploidy of organisms. The Dice coefficient is the suitable measure for haploids with codominant markers and it can be applied directly to (0,1)-vectors representing banding profiles of individuals. None of the common measures, Dice, Jaccard, simple mismatch coefficient (or the squared Euclidean distance), is appropriate for diploids with codominant markers. By transforming multiallelic banding patterns at each locus into the corresponding homozygous or heterozygous states, a new measure of dissimilarity within locus was developed and expanded to assess dissimilarity between multilocus states of two individuals by averaging across all codominant loci tested. There is no rigorous well-founded solution in the case of dominant markers. The simple mismatch coefficient is the most suitable measure of dissimilarity between banding patterns of closely related haploid forms. For distantly related haploid individuals, the Jaccard dissimilarity is recommended. In general, no suitable method for measuring genetic dissimilarity between diploids with dominant markers can be proposed. Banding patterns of diploids with dominant markers and polyploids with codominant markers represent individuals' phenotypes rather than genotypes. All dissimilarity measures proposed and developed herein are metrics.
The host range of P. graminis is very broad compared with that of most Puccinia spp.; it includes at least 365 species of cereals and grasses in 54 genera [Anikster (1984) The Cereal Rusts. Orlando, FL: Academic Press, pp. 115-130]. Wheat stem rust, P. graminis f. sp. tritici, was shown to infect 74 species in 34 genera in artificial inoculations of seedlings, but only 28 of those species belonging to eight genera were known to be natural hosts of the fungus. Other formae speciales of P. graminis have narrower host ranges than P. graminis f. sp. tritici. Disease symptoms: Infections in cereals or grasses occur mainly on stems and leaf sheaths, but occasionally they may be found on leaf blades and glumes as well. The first macroscopic symptom is usually a small chlorotic fleck, which appears a few days after infection. About 8-10 days after infection, a pustule several millimetres long and a few millimetres wide is formed by rupture of the host epidermis from pressure of a mass of brick-red urediniospores produced in the infection. These uredinial pustules are generally linear or diamond shaped and may enlarge up to 10 mm long. The powdery masses of urediniospores appear similar to rust spots on a weathered iron surface. With age, the infection ceases production of brick-red urediniospores and produces a layer of black teliospores in their place, causing the stems of heavily infected plants to appear blackened late in the season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.