Abstract-In this paper, a scheme for estimating frequencies and damping factors of multidimensional nuclear magnetic resonance (NMR) data is presented. multidimensional NMR data can be modeled as the sum of several multidimensional damped sinusoids. The estimated frequencies and damping factors of multidimensional NMR data play important roles in determining protein structures. In this paper we present a high-resolution subspace method for estimating the parameters of NMR data. Unlike other methods, this algorithm makes full use of the rank-deficiency and Hankel properties of the prediction matrix composed of NMR data. Hence, it can estimate the signal parameters under low signal-to-noise ratio (SNR) by using a few data points. The effectiveness of the new algorithm is confirmed by computer simulations and it is tested by experimental data.
Abstract-Downlink beamforming is a promising technique for direct-sequence code-division multiple-access (DS-CDMA) systems with multimedia services to effectively reduce strong interferences induced by high data rate users. In this paper, a new downlink beamforming technique is proposed that converts downlink beamforming problem into a virtual uplink one and takes into account of the data rate information of all users. Since the main complexity of this method is due to the existence of multidelay paths, two simplified algorithms are suggested using equivalent one-path channel vector to replace multipath channel vectors. Computer simulation results are given to evaluate downlink capacity of DS-CDMA systems using base station antenna array and the new algorithms proposed in this paper.
Abstract-Currently existing subpixel motion estimation algorithms require interpolation of interpixel values which undesirably increases the overall complexity and data flow and deteriorates estimation accuracy. In this paper, we develop discrete cosine transform (DCT)-based techniques to estimate subpel motion at different desired subpel levels of accuracy in the DCT domain without interpolation. We show that subpixel motion information is preserved in the DCT of a shifted signal under some condition in the form of pseudophases, and we establish subpel sinusoidal orthogonal principles to extract this information. The proposed subpixel techniques are flexible and scalable in terms of estimation accuracy with very low computational complexity O(N 2 ) compared to O(N 4 ) for the full-search block-matching approach and its subpixel versions. Above all, motion estimation in the DCT domain instead of the spatial domain simplifies the conventional hybrid DCT-based video coder, especially the heavily loaded feedback loop in the conventional design, resulting in a fully DCT-based high-throughput video codec. In addition, the computation of pseudophases is local, and thus a highly parallel architecture is feasible for the DCT-based algorithms. Finally, simulation on video sequences of different characteristics shows comparable performance of the proposed algorithms to block-matching approaches.
We propose novel discrete cosine transform (DCT) pseudophase techniques to estimate shift/delay between two one-dimensional(1-D) signals directly from their DCT coefficients by computing the pseudophase shift hidden in DCT and then employing the sinusoidal orthogonal principles, applicable to signal delay estimation remote sensing. Under the two-dimensional (2-D) translational motion model, we further extend the pseudophase techniques to the DCT-based motion estimation (DXT-ME) algorithm for 2-D signals/images. The DXT-ME algorithm has certain advantages over the commonly used full search block-matching approach (BKM-ME) for application to video coding despite certain limitations. In addition to its robustness in a noisy environment and low computational complexity, O(M(2)) for an MxM search range in comparison to the O(N(2) . M(2)) complexity of BKM-ME for an NxN block, its ability to estimate motion completely in DCT domain makes possible the fully DCT-based motion-compensated video coder structure, which has only one major component in the feedback loop instead of three as in the conventional hybrid video coder design, and thus results in a higher system throughput. Furthermore, combination of the DCT and motion estimation units can provide space for further optimization of the overall coder. In addition, the DXT-ME algorithm has solely highly parallel local operations and this property makes feasible parallel implementation suitable for very large scale integration (VLSI) design. Simulation on a number of video sequences is presented with comparison to BKM-ME and other fast block search algorithms for video coding applications even though DXT-ME is completely different from any block search algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.