The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5• wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for the discovery of new objects. Supernova imaging observations are being acquired between September 1 and November 30 of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.
A detailed analysis of the data from a high sampling rate, multi-month reverberation mapping campaign, undertaken primarily at MDM Observatory with supporting observations from telescopes around the world, reveals that the Hβ emission region within the broad line regions (BLRs) of several nearby AGNs exhibit a variety of kinematic behaviors. While the primary goal of this campaign was to obtain either new or improved Hβ reverberation lag measurements for several relatively low luminosity AGNs, we were also able to unambiguously reconstruct velocity-resolved reverberation signals from a subset of our targets. Through high cadence spectroscopic monitoring of the optical continuum and broad Hβ emission line variations observed in the nuclear regions of NGC 3227, NGC 3516, and NGC 5548, we clearly see evidence for outflowing, infalling, and virialized BLR gas motions, respectively.
Galah is an ongoing high-resolution spectroscopic survey with the goal of disentangling the formation history of the Milky Way using the fossil remnants of disrupted star formation sites that are now dispersed around the Galaxy. It is targeting a randomly selected magnitude-limited (V 14) sample of stars, with the goal of observing one million objects. To date, 300,000 spectra have been obtained. Not all of them are correctly processed by parameter estimation pipelines, and we need to know about them. We present a semi-automated classification scheme that identifies different types of peculiar spectral morphologies in an effort to discover and flag potentially problematic spectra and thus help to preserve the integrity of the survey results. To this end, we employ the recently developed dimensionality reduction technique t-SNE (t-distributed stochastic neighbor embedding), which enables us to represent the complex spectral morphology in a two-dimensional projection map while still preserving the properties of the local neighborhoods of spectra. We find that the majority (178,483) of the 209,533 Galah spectra considered in this study represents normal single stars, whereas 31,050 peculiar and problematic spectra with very diverse spectral features pertaining to 28,579 stars are distributed into 10 classification categories: hot stars, cool metal-poor giants, molecular absorption bands, binary stars, Hα/Hβ emission, Hα/Hβ emission superimposed on absorption, Hα/Hβ P-Cygni, Hα/Hβ inverted P-Cygni, lithium absorption, and problematic. Classified spectra with supplementary information are presented in the catalog, indicating candidates for follow-up observations and population studies of the short-lived phases of stellar evolution.
We measure chemical abundance ratios and radial velocities in four massive (i.e., young) [α/Fe]-rich red giant stars using high-resolution high-S/N spectra from ES-PaDOnS fed by Gemini-GRACES. Our differential analysis ensures that our chemical abundances are on the same scale as the Alves-Brito et al. (2010) study of bulge, thin and thick disk red giants. We confirm that the program stars have enhanced [α/Fe] ratios and are slightly metal poor. Aside from lithium enrichment in one object, the program stars exhibit no chemical abundance anomalies when compared to giant stars of similar metallicity throughout the Galaxy. This includes the elements Li, O, Si, Ca, Ti, Cr, Ni, Cu, Ba, La, and Eu. Therefore, there are no obvious chemical signatures that can help to reveal the origin of these unusual stars. While our new observations show that only one star (not the Li-rich object) exhibits a radial velocity variation, simulations indicate that we cannot exclude the possibility that all four could be binaries. In addition, we find that two (possibly three) stars show evidence for an infrared excess, indicative of a debris disk. This is consistent with these young [α/Fe]-rich stars being evolved blue stragglers, suggesting their apparent young age is a consequence of a merger or mass transfer. We would expect a binary fraction of ∼50% or greater for the entire sample of these stars, but the signs of the circumbinary disk may have been lost since these features can have short timescales. Radial velocity monitoring is needed to confirm the blue straggler origin.
We present a study of outflow and feedback in the well-known Seyfert 2 galaxy Markarian 573 using high angular resolution long-slit spectrophotometry obtained with the Hubble Space Telescope Imaging Spectrograph (STIS). Through analysis of the kinematics and ionization state of a biconical outflow region emanating from the nucleus, we find that the outflow does not significantly accelerate the surrounding host-galaxy interstellar gas and is too weak to be a strong ionization mechanism in the extended emission regions. Instead, the excitation of the extended regions is consistent with photoionization by the active nucleus. From energetics arguments we show that the nuclear outflow is slow and heavy and has a mechanical luminosity that is only ∼1% of the estimated bolometric luminosity of the system. The energy in the outflow is able to mildly shape the gas in the extended regions but appears to be insufficient to unbind it, or even to plausibly disrupt star formation. These results are at odds with the picture of strong AGN feedback that has been invoked to explain certain aspects of galaxy evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.