ZnO-M x O y heterostructures (M=Co, Mn, Ni, or In) are fabricated via hydrothermal synthesis method. X-ray diffraction and Fourier-transform infrared spectroscopy analyses endorse the successive formation of the various heterostructures. Field Emission Scanning electron microscope and Brunauer-Emmett-Teller (BET) surface area studies confirm the porous nature of the heterostructures obtained. The band gaps of various heterostructures are calculated that, 3.1, 2.71, 2.64, and 2.19 eV for ZnO-NiO, ZnO-In 2 O 3 , ZnO-Co 3 O 4 , and ZnO-MnO 2 , respectively. The photocatalytic activities of the fabricated heterostructures are investigated through the degradation of phenol under direct sunlight irradiation. The results show that the photocatalytic activity is affected by the conduction band (CB) and valence band (VB) positions rather than surface area of ZnO-M x O y heterostructure nanocomposites.
Multiwall carbon nanotube (MWCNT) composite materials require careful formulation of processing methods to ultimately realize the desired properties. Until now, controlled dispersion of MWCNT remains a challenge, due to strong van der Waals binding energies associated with the MWCNT aggregates. In the present study, an effort has been made to disperse MWCNTs in organic solvents like dichloromethane, ethanol, isopropyl alcohol, and hexane through hydrothermal reaction. Dichloromethane is considered the best solvent for the dispersion of MWCNTs. The characterizations were carried out to find the dispersion design, particle size, and stabilization, which clearly indicate that the desired properties of MWCNTs have been achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.