In chronic conditions, patients and providers need support in understanding and managing illness over time. Focusing on endometriosis, an enigmatic chronic condition, we conducted interviews with specialists and focus groups with patients to elicit their work in care specifically pertaining to dealing with an enigmatic disease, both independently and in partnership, and how technology could support these efforts. We found that the work to care for the illness, including reflecting on the illness experience and planning for care, is significantly compounded by the complex nature of the disease: enigmatic condition means uncertainty and frustration in care and management; the multi-factorial and systemic features of endometriosis without any guidance to interpret them overwhelm patients and providers; the different temporal resolutions of this chronic condition confuse both patients and providers; and patients and providers negotiate medical knowledge and expertise in an attempt to align their perspectives. We note how this added complexity demands that patients and providers work together to find common ground and align perspectives, and propose three design opportunities (considerations to construct a holistic picture of the patient, design features to reflect and make sense of the illness, and opportunities and mechanisms to correct misalignments and plan for care) and implications to support patients and providers in their care work. Specifically, the enigmatic nature of endometriosis necessitates complementary approaches from human-centered computing and artificial intelligence, and thus opens a number of future research avenues.
Objective To develop a computable representation for medical evidence and to contribute a gold standard dataset of annotated randomized controlled trial (RCT) abstracts, along with a natural language processing (NLP) pipeline for transforming free-text RCT evidence in PubMed into the structured representation. Materials and methods Our representation, EvidenceMap, consists of 3 levels of abstraction: Medical Evidence Entity, Proposition and Map, to represent the hierarchical structure of medical evidence composition. Randomly selected RCT abstracts were annotated following EvidenceMap based on the consensus of 2 independent annotators to train an NLP pipeline. Via a user study, we measured how the EvidenceMap improved evidence comprehension and analyzed its representative capacity by comparing the evidence annotation with EvidenceMap representation and without following any specific guidelines. Results Two corpora including 229 disease-agnostic and 80 COVID-19 RCT abstracts were annotated, yielding 12 725 entities and 1602 propositions. EvidenceMap saves users 51.9% of the time compared to reading raw-text abstracts. Most evidence elements identified during the freeform annotation were successfully represented by EvidenceMap, and users gave the enrollment, study design, and study Results sections mean 5-scale Likert ratings of 4.85, 4.70, and 4.20, respectively. The end-to-end evaluations of the pipeline show that the evidence proposition formulation achieves F1 scores of 0.84 and 0.86 in the adjusted random index score. Conclusions EvidenceMap extends the participant, intervention, comparator, and outcome framework into 3 levels of abstraction for transforming free-text evidence from the clinical literature into a computable structure. It can be used as an interoperable format for better evidence retrieval and synthesis and an interpretable representation to efficiently comprehend RCT findings.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.