Attrition in longitudinal studies is a major threat to the representativeness of the data and the generalizability of the findings. Typical approaches to address systematic nonresponse are either expensive and unsatisfactory (e.g., oversampling) or rely on the unrealistic assumption of data missing at random (e.g., multiple imputation). Thus, models that effectively predict who most likely drops out in subsequent occasions might offer the opportunity to take countermeasures (e.g., incentives). With the current study, we introduce a longitudinal model validation approach and examine whether attrition in two nationally representative longitudinal panel studies can be predicted accurately. We compare the performance of a basic logistic regression model to a more flexible, data-driven machine learning algorithm––Gradient Boosting Machines. Our results show almost no difference in accuracies for both modeling approaches, which contradicts claims of similar studies on survey attrition. Prediction models could not be generalized across surveys and were less accurate when tested at a later survey wave. We discuss the implications of these findings for survey retention, the use of complex machine learning algorithms, and give some recommendations to deal with study attrition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.