In this paper we present an end-to-end mobile communication testbed that utilizes various open source projects. The testbed consists of Global System for Mobiles (GSM), General Packet Radio Service (GPRS) and System Architecture Evolution/Long Term Evolution(SAE/LTE) elements implemented on a virtual platform. Our goal is to utilize the testbed to perform security analysis. We used virtualization to get flexibility and scalability in implementation. So as to prove the usability of the testbed, we reported some of the test results in this paper. These tests are mainly related to security. The test results prove that the testbed functions properly.
Internet Protocol security (IPSec) is an end-to-end security scheme to provide security at the IP network layer, but this comes with performance implications leading to throughput reduction and resource consumption. In this paper we present a throughput performance analysis of IPSec protocol, for both IPv4 and IPv6, using various cryptographic algorithms as recommended in the standards [13]. In this study we have considered only throughput performance for authenticated encryption algorithms AES-GCM and AES-CCM, encryption algorithms AES-CBC, AES-CTR, and 3DES, and authentication algorithms SHA1, SHA2 and XCBC. The result shows that AES-GCM provides better performance compared to the other recommended algorithms.
Mobile communication systems are ubiquitous nowadays. The main requirements of these networks are privacy and security of the subscriber as well as a high performance. To provide these properties the 3GPP (Third Generation Partnership Project) developed the LTE (Long Term Evolution) mobile communication network which is deployed worldwide.In this paper, we give a brief overview of the LTE Network Architecture as well as a look on the security mechanism as defined by 3GPP. We describe the security architecture and discuss possible threats and attacks on the core and on the access network. Due to these possible attacks we developed a program which is able to extract certain security relevant information out of the message flow in real time and to detect a possible attach flood attack. Finally, we validate the function of the program with three test cases and discuss the impact of such flood attacks on the LTE network and other future work to extend it to other protocol exchanges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.