In this paper, we present multimodal 2D +3D face recognition method using block based curvelet features. The 3D surface of face (Depth Map) is computed from the stereo face images using stereo vision technique. The statistical measures such as mean, standard deviation, variance and entropy are extracted from each block of curvelet subband for both depth and intensity images independently.In order to compute the decision score, the KNN classifier is employed independently for both intensity and depth map. Further, computed decision scoresof intensity and depth map are combined at decision level to improve the face recognition rate. The combination of intensity and depth map is verified experimentally using benchmark face database. The experimental results show that the proposed multimodal method is better than individual modality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.