Objective: To determine in vitro the frictional properties, surface morphology, and load deflection rate with looped designs of two newly developed titanium aluminum nitride (TiAlN) and tungsten carbide/carbon (WC/C) physical vapor deposition (PVD) coated beta titanium orthodontic archwires coated with PVD. Materials and Methods: Frictional properties with Tidy's protocol, surface evaluation before and after friction testing with the help of scanning electron microscopy (ESEM), and load deflection rate with different orthodontic loops on Instron universal testing machine were evaluated. Results: The results clearly indicate reduced frictional properties for WC/C coated archwires when compared with uncoated and TiAlN coated archwires. There were no significant surface alterations upon ESEM evaluation of friction tested archwires. Low load deflection rate was exhibited by both coated archwires, the difference in load deflection rate between the coated and uncoated archwires was statistically significant. Conclusion: WC/C coated wires can be recommended for even sliding mechanics due to reduced frictional properties, better surface characteristics, and low load deflection rate compared with TiAlN coated and uncoated archwires. (Angle Orthod. 2012;82:22-29.)
Introduction: Orthodontic treatment is presently dominated by two techniques, the Begg light wire differential force technique and the preadjusted edgewise technique. Orthodontic appliances at present commonly utilize sliding mechanics for extraction space closure with different types of force delivery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.