Experiments are performed on a modern design transonic shroudless low-aspect ratio fan blisk that experienced both subsonic/transonic and supersonic stall-side flutter. High-response flush mounted miniature pressure transducers are utilized to measure the unsteady aerodynamic loading distribution in the tip region of the fan for both flutter regimes, with strain gages utilized to measure the vibratory response at incipient and deep flutter operating conditions. Numerical simulations are performed and compared with the benchmark data using an unsteady three-dimensional nonlinear viscous computational fluid dynamic (CFD) analysis, with the effects of tip clearance, vibration amplitude, and the number of time steps-per-cycle investigated. The benchmark data are used to guide the validation of the code and establish best practices that ensure accurate flutter predictions.
Experiments are performed on a modern design transonic shroudless low-aspect ratio fan blisk that experienced both subsonic/transonic and supersonic stall-side flutter. High-response flush mounted miniature pressure transducers are utilized to measure the unsteady aerodynamic loading distribution in the tip region of the fan for both flutter regimes, with strain gages utilized to measure the vibratory response at incipient and deep flutter operating conditions. Numerical simulations are performed and compared with the benchmark data using an unsteady three-dimensional nonlinear viscous computational fluid dynamic (CFD) analysis, with the effects of tip clearance, vibration amplitude, and the number of time steps-per-cycle investigated. The benchmark data are used to guide the validation of the code and establish best practices that ensure accurate flutter predictions.
The study of aerosol dispersion in indoor environments is essential to understanding and mitigating airborne virus transmission, such as SARS-CoV-2. Computational Fluid Dynamics (CFD) has emerged as a valuable tool for investigating aerosol dispersion, providing an alternative to costly experimental methods. In this study, we investigated the performance of four (4) Reynolds-averaged Navier-Stokes (RANS) turbulence models in predicting aerosol dispersion from a human body coughing in a small, ventilated indoor environment. We compared the Standard, RNG, Realizable k-ϵ models and the SST k- ω model using the same boundary conditions. We initially observed that the horizontal distance of the coughed aerosols after 10.2s dispersion time was substantially shorter with the standard k-ϵ turbulence compared to the other three turbulence models compared to the SST k-ω model, the RNG, and realizable k-ϵ models exhibit a high degree of similarity in their dispersion patterns. Specifically, we observed that the aerosols dispersed horizontally faster with the RNG and Realizable k-ϵ models. In conclusion, when compared to qualitative data from the literature, our observations exclude the standard k-ϵ turbulence. However, to select the most appropriate turbulence model for capturing the cough flow and aerosol dispersion dynamics, further detailed validation against both quantitative and qualitative data is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.