This study was conducted to investigate the effects of water chilling (WC), air chilling (AC), and evaporative air chilling (EAC) on the moisture content, processing yield, surface color, and visual appearance of broiler carcasses. For the WC treatment, 1 group of birds was hard scalded and submersed into ice slush, whereas for AC, 1 group of birds was soft scalded and exposed to blowing air (1.0 m/s at 0°C) and for EAC, or 1 group of birds was soft scalded and exposed to blowing air and a cold water spray (every 5 min). During chilling, carcass temperature was reduced most effectively by WC (55 min), followed by EAC (120 min) and AC (155 min). After chilling, both WC and EAC carcasses picked up moisture at 4.6 and 1.0% of their weights, respectively, whereas AC carcasses lost 1.5% of their weight. On cutting at 5 h postmortem, WC carcasses showed the highest (2.5%), EAC showed the second highest (0.4%), and AC showed the least (0.3%) moisture loss. After 24 h of storage, almost 83% of the absorbed water in the WC carcass parts was released as purge, whereas EAC and AC carcasses maintained weights close to the prechilled weights. In an instrumental color evaluation and a visual evaluation by panelists, AC carcasses showed a darker appearance, a more yellow color, and more surface discoloration compared with WC or EAC carcasses.
Three poultry chilling methods, namely, water chilling (WC), air chilling (AC), and evaporative air chilling (EAC), were compared to evaluate their effects on broiler breast meat quality and consumer sensory characteristics. A total of 189 birds were processed with 1 of the 3 chilling methods. One-third of the birds were hard scalded (57.7°C, 120 s) and subjected to WC (an ice slurry immersion at 0°C). The remaining birds were soft scalded (50°C, 220 s) and randomly assigned to either AC (blowing air, 1.0 m/s) or EAC (blowing air plus each carcass sprayed with 0.5 L of 0.4°C water) in a chilling room (0.9 ± 0.4°C). Water chilling reduced the carcass temperature most efficiently (57 min), whereas AC and EAC were the least (125 min) and intermediate (93 min) in efficiency, respectively. No significant difference was found among the chilling methods in moisture content, cooking yield, and shear force of deskinned breast fillets stored overnight. However, the pH (5.6) of 24-h stored fillets was higher in WC fillets than in AC (5.5) and EAC (5.5) fillets. For the surface color of skinless breasts, WC carcasses showed a higher Commission Internationale de l'Éclairage (CIE) L* value than AC or EAC carcasses, whereas AC carcasses exhibited more redness (higher CIE a*) and yellowness (higher CIE b*) than the other 2 chilling methods. When raw breast meat was made into cooked gels, no significant difference was observed in cooking loss, moisture content, shear stress, and shear strain, regardless of the chilling method. In consumer sensory evaluations, AC breasts had a higher juiciness score than did WC and EAC breasts, but no significant difference was found for flavor, texture, and overall acceptability.
Carcass chilling during broiler processing is a critical step in preventing growth of pathogenic and spoilage bacteria. The objective of this study was to compare the microbiological quality of air- and water-chilled broiler carcasses processed at the same commercial facility. For each of four replications, 15 broilers were collected from the same commercial processing line after evisceration, after spraying with cetylpyridinium chloride (a cationic disinfectant), and after air chilling or water immersion chilling (WIC). All carcasses were quantitatively examined for mesophilic aerobic bacteria, Escherichia coli, coliforms, and Campylobacter as well as for the presence of Salmonella and Campylobacter. No significant differences (P > 0.05) were seen between air and water chilling for E. coli or coliforms or for the incidence of Salmonella and Campylobacter. Lower numbers of Campylobacter were recovered from WIC than from air-chilled carcasses (P < 0.05), but the incidence of Campylobacter on WIC carcasses was similar, suggesting that some Campylobacter organisms were injured rather than killed during WIC. In-line spraying with the disinfectant effectively decreased the incidence of Salmonella and Campylobacter on prechilled carcasses; however, cells presumably injured by the sanitizer recovered during chilling. Therefore, on-farm intervention strategies remain critically important in minimizing the spread of microbial contaminants during processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.