: The main purpose of this work is to study the effectiveness of using FeCeOx nanocomposites doped with Nb2O5 for the purification of aqueous solutions from manganese. X-ray diffraction, energy–dispersive analysis, scanning electron microscopy, vibrational magnetic spectroscopy, and mössbauer spectroscopy were used as research methods. It is shown that an increase in the dopant concentration leads to the transformation of the shape of nanoparticles from spherical to cubic and rhombic, followed by an increase in the size of the nanoparticles. The spherical shape of the nanoparticles is characteristic of a structure consisting of a mixture of two phases of hematite (Fe2O3) and cerium oxide CeO2. The cubic shape of nanoparticles is typical for spinel-type FeNbO4 structures, the phase contribution of which increases with increasing dopant concentration. It is shown that doping leads not only to a decrease in the concentration of manganese in model solutions, but also to an increase in the efficiency of adsorption from 11% to 75%.
The work is dedicated to the study of the structural and optical characteristics, as well as the phase transformations, of ferrite nanoparticles of CeO2-Fe2O3. To characterize the results obtained, the methods of scanning and transmission microscopy, X-ray diffraction (XRD) spectroscopy, and Mössbauer spectroscopy were applied. It was found that the initial nanoparticles are polycrystalline structures based on cerium oxide with the presence of X-ray amorphous inclusions in the structure, which are characteristic of iron oxide. The study determined the dynamics of phase and structural transformations, as well as the appearance of a magnetic texture depending on the annealing temperature. According to the Mossbauer spectroscopy data, it has been established that a rise in the annealing temperature gives rise to an ordering of the magnetic properties and a decrease in the concentration of cationic and vacancy defects in the structure. During the life test of synthesized nanoparticles as cathode materials for lithium-ion batteries, the dependences of the cathode lifetime on the phase composition of nanoparticles were established. It is established that the appearance of a magnetic component in the structure result in a growth in the resource lifetime and the number of operating cycles. The results show the prospects of using these nanoparticles as the basis for lithium-ion batteries, and the simplicity of synthesis and the ability to control phase transformations opens up the possibility of scalable production of these nanoparticles for cathode materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.