Annual Rossby waves in northern South China Sea had previously been studied using altimetry and model data; however, how they connect to subsurface temperature fluctuations has not been examined. This study analyzed a 22-month, surface to −500-m temperature time series at 18.3°N, 115.5°E, together with satellite and other data, to show the arrivals near z ≈ −300 m and deeper cool (warm) Rossby waves after their generation near the Luzon Strait in winter (summer). Temperature fluctuations with time scales of a few weeks, and with maximum anomalies near z ≈ −100 m, were also found embedded in the smooth Rossby waves and caused by propagating eddies. Eddy fluctuations and propagation past the mooring were of two types: southwestward from southwestern Taiwan, triggered by Kuroshio intrusion that produced anticyclone–cyclone pairs in late fall and winter, and eddies propagating westward from Luzon forced by annual anomalies of wind stress curl and Kuroshio path in the Luzon Strait
Abstract. Limited observations exist for a reliable assessment of annual CO2 uptake that takes into consideration the strong seasonal variation in the river-dominated East China Sea (ECS). Here we explore seasonally representative CO2 uptakes by the whole East China Sea derived from observations over a 14-year period. We firstly identified the biological sequestration of CO2 taking place in the highly productive, nutrient-enriched Changjiang River plume, dictated by the Changjiang River discharge in warm seasons. We have therefore established an empirical algorithm as a function of sea surface temperature (SST) and Changjiang River discharge (CRD) for predicting sea surface pCO2. Syntheses based on both observations and models show that the annually averaged CO2 uptake from atmosphere during the period 1998–2011 was constrained to about 1.8 ± 0.5 mol C m−2 yr−1. This assessment of annual CO2 uptake is more reliable and representative, compared to previous estimates, in terms of temporal and spatial coverage. Additionally, the CO2 time series, exhibiting distinct seasonal pattern, gives mean fluxes of −3.7 ± 0.5, −1.1 ± 1.3, −0.3 ± 0.8 and −2.5 ± 0.7 mol C m−2 yr−1 in spring, summer, fall and winter, respectively, and also reveals apparent interannual variations. The flux seasonality shows a strong sink in spring and a weak source in late summer–mid-fall. The weak sink status during warm periods in summer–fall is fairly sensitive to changes of pCO2 and may easily shift from a sink to a source altered by environmental changes under climate change and anthropogenic forcing.
Abstract. Human-induced excess nitrogen outflowing from land through rivers to oceans has resulted in serious impacts on terrestrial and coastal ecosystems. Oceania, which occupies < 2.5% of the global land surface, delivers 12% of the freshwater and dissolved materials to the ocean on a global scale. However, there are few empirical data sets on riverine dissolved inorganic nitrogen (DIN) fluxes in the region, and their dynamics are poorly understood. In this study, a river monitoring network covering different types of land uses and population densities was implemented to investigate the mechanism of DIN export. The results show that DIN concentration/yield varied from ∼20 μM/∼300 kg-N km−2 yr−1 to ∼378 μM/∼10 000 kg-N km−2 yr−1 from the relatively pristine headwaters to the populous estuary. Agriculture and population density control DIN export in less densely populated regions and urban areas, respectively, and runoff controls DIN at the watershed scale. Compared to documented estimates from global models, the observed DIN export from the Danshui River is 2.3 times larger, which results from the region-specific response of DIN yield to dense population and abundant runoff. The dominating DIN species change gradually from NO3− in the headwaters (∼97%) to NH4+ in the estuary (∼60%) following the urbanization gradient. The prominent existence of NH4+ is probably the result of the anaerobic water body and short residence time, unlike in large river basins. Given the analogous watershed characteristics of the Danshui River to the rivers in Oceania, our study could serve as a first example to examine riverine DIN fluxes in Oceania.
Abstract. This study combines the observed riverine DIN (dissolved inorganic nitrogen) export and the controlling factors (land-use, population and discharge) to inversely estimate the effective DIN yield factors for individual land-use and DIN per capita loading. A total of 16 sub-catchments, with different land-use compositions on the Danshui River of Taiwan, were used in this study. Observed riverine DIN concentrations and yields varied from 20–450 μM and 400–10 000 kg N km−2 yr−1 corresponding to the increase of urbanization gradient (e.g. building and population). Meanwhile, the transport behaviors changed from hydrological enhancement to dilution with increasing urbanization as well. Our method shows that the DIN yield factors, independent of discharge, are 12.7, 63.9, and 1381.0 μM, for forest, agriculture, and building, respectively, which equals to 444.5, 2236.5, 48 335 kg N km−2 yr−1 at the given annual runoff of 2500 mm. The agriculture DIN yield only accounts for 10% of fertilizer application indicating the complicated N cascade and possible over fertilization. The DIN per capita loading (~0.49 kg N capita−1 yr−1) which is lower than the documented human N emission (1.6–5.5 kg N capita−1 yr−1) can be regarded as an effective export coefficient after treatment or retention. A conducted scenario experiment supports the observations demonstrating the capability for assessment. We therefore, can extrapolate all possible combinations of land-use, discharge, and population density for evaluation. This can provide a strong basis for watershed management and supplementary estimation for regional to global study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.