While applying a sigma-point Kalman filter (SPKF) to a high-dimensional system such as the oceanic general circulation model (OGCM), a major challenge is to reduce its heavy burden of storage memory and costly computation. In this study, we propose a new scheme for SPKF to address these issues. First, a reduced rank SPKF was introduced on the high-dimensional model state space using the truncated single value decomposition (TSVD) method (T-SPKF). Second, the relationship of SVDs between the model state space and a low-dimensional ensemble space is used to construct sigma points on the ensemble space (ET-SPKF). As such, this new scheme greatly reduces the demand of memory storage and computational cost and makes the SPKF method applicable to high-dimensional systems. Two numerical models are used to test and validate the ET-SPKF algorithm. The first model is the 40-variable Lorenz model, which has been a test bed of new assimilation algorithms. The second model is a realistic OGCM for the assimilation of actual observations, including Argo and in situ observations over the Pacific Ocean. The experiments show that ET-SPKF is computationally feasible for high-dimensional systems and capable of precise analyses. In particular, for realistic oceanic assimilations, the ET-SPKF algorithm can significantly improve oceanic analysis and improve ENSO prediction. A comparison between the ET-SPKF algorithm and EnKF (ensemble Kalman filter) is also tribally conducted using the OGCM and actual observations.
The huge computational expense has been a main challenge while applying the sigma-point unscented Kalman filter (SPUKF) to a high-dimensional system. This study focuses on this issue and presents two methods to construct a reduced-rank sigma-point unscented Kalman filter (RRSPUKF). Both techniques employ the truncated singular value decomposition (TSVD) to factorize the covariance matrix and reduce its rank through truncation. The reduced-rank square root matrix is used to select the most important sigma points that can retain the main statistical features of the original sigma points. In the first technique, TSVD is applied on the covariance matrix constructed in the data space [RRSPUKF(D)], whereas in the second technique TSVD is applied on the covariance matrix constructed in the ensemble space [RRSPUKF(E)]. The two methods are applied to a realistic El Niño–Southern Oscillation (ENSO) prediction model [Lamont-Doherty Earth Observatory model, version 5 (LDEO5)] to assimilate the sea surface temperature (SST) anomalies. The results show that both the methods are more computationally efficient than the full-rank SPUKF, in spite of losing some estimation accuracy. When the truncation reaches a trade-off between cost expense and estimation accuracy, both methods are able to analyze the phase and intensity of all major ENSO events from 1971 to 2001 with comparable estimation accuracy. Furthermore, the RRSPUKF is compared against ensemble square root filter (EnSRF), showing that the overall analysis skill of RRSPUKF and EnSRF are comparable to each other, but the former is more robust than the latter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.